Transmission Electron Microscopy a Powerful Means to Investigate the Glazed Coating of Ancient Ceramics

Article Preview

Abstract:

Optical microscopy allows observation of details of the order of micrometers. In an electron microscope that uses an electron beam to make an image, the resolution is a thousand times better. It becomes possible to observe details of the nanometer (nm) in conventional mode and order of the Angstrom (1 Å = 0.1 nm) in high resolution mode. This technique requires a delicate preparation of samples to be sufficiently thin (≤ 100 nm) to allow the passage of electrons to an observation in transmission. The transfer of energy between incident electrons and atoms in the sample are operated through energy loss spectroscopy (EELS) and X-ray emission (EDX) to perform a chemical analysis of the observed object. The purpose of this paper is to show, through some examples, the potential of transmission electron microscopy and related techniques in the study of structure and composition of heritage materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-146

Citation:

Online since:

September 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.W. Edington: Pratical Electron Microscopy in materials science (Oxford University Press, New York, 1976).

Google Scholar

[2] P. Hawkes: Magnetic Electron Lenses (Springer Verlag, New York, 1982).

Google Scholar

[3] D.B. Williams and C.B. Carter: Transmission Electron Microscopy. A Textbook for Materials Science (Plenum Press, New York and London, 1996). Figure 6 The experimental value of A/B is 1. 15 and those of α and β are 65° and 50°, respectively. These values are in rough agreement with the.

Google Scholar

[12] zone axis diffraction of a cubic structure. The calculated lattice spacings of (200) and (211) planes are 2. 4 and 2. 1 Å. These are roughly in consistent with the lattice spacings of Ag2O (d200=2. 38 Å; d211=1. 94 Å), which has a primitive cubic lattice. Figure 5 Bright field image of a 9th century lusterware (Sue) with the comparison of EEL spectrum of Cu-L edges of one nanoparticles with references EEL spectra.

Google Scholar

[4] J. Ayache, L. Beaunier, J. Boumendil, G. Ehret and D. Laub: Guide de préparation des échantillons pour la microscopie électronique en transmission, tome 2 (PUSE, Saint-Etienne, 2007).

Google Scholar

[5] L.A. Giannuzzi and F.A. Stevie: Micron Vol. 30 (1999), p.197.

Google Scholar

[6] D.S. McPhail, R.J. Chater and L. Li: Microchimica Acta Vol. 161 (2008), p.387.

Google Scholar

[7] M.W. Phaneuf: Micron Vol. 30 (1999), p.277.

Google Scholar

[8] D. Bleiner, M. Macrì, P. Gasser, V. Sautter and A. Maras: Talanta Vol. 68 (2006), p.1623.

Google Scholar

[9] R. Wirth: Chemical Geology (2008), p. doi: 10. 1016/j. chemgeo. 2008. 05. 05. 019.

Google Scholar

[10] K. Tsujimoto and M. Kitada: Journal of the Japan Institute of Metals Vol. 68 (2004), p.311.

Google Scholar

[11] R. Haswell, U. Zeile and K. Mensch: Microchimica Acta Vol. 161 (2008), p.363.

Google Scholar

[12] M.S. Tite: Archaeometry Vol. 50 (2008), p.216.

Google Scholar

[13] R.F. Egerton: Electron Energy-Loss Spectroscopy in The Electron Microscope (Plenum Press, New York, 1996).

Google Scholar

[14] O.L. Krivanek, A.J. Gubbens, N. Dellby and C.E. Meyer: Microscopy Microanalysis Microstructures Vol. 3 (1992), p.187.

Google Scholar

[15] C. Colliex, M. Tence, E. Lefevre, C. Mory, H. Gu, D. Bouchet and J. C.: Mikrochimica Acta Vol. 114 (1994), p.71.

Google Scholar

[16] M.A. Marcus, A.J. Westphal and S.C. Fakra: Journal of Synchrotron Radiation Vol. 15 (2008), p.463.

Google Scholar

[17] P. Sciau, S. Relaix, C. Roucau and Y. Kihn: Journal of the American Ceramic Society Vol. 89 (2006), p.1053.

Google Scholar

[18] A. Gomez-Herrero, E. Urones-Garrote, A.J. Lopez and L.C. Otero-Diaz: Applied Physics A: Materials Science & Processing Vol. 92 (2008), p.97.

Google Scholar

[19] C. Mirguet, C. Dejoie, C. Roucau, P. de Parseval, S.J. Teat and P. Sciau: Archaeometry (2009), p. (to be published).

DOI: 10.1111/j.1475-4754.2008.00452.x

Google Scholar

[20] Ph. Colomban: Journal of nano Research, in this Cultural Heritage Special Issue.

Google Scholar

[21] J. Pérez-Arantegui, J. Molera, A. Larrea, T. Pradell, M. Vendrell-Saz, I. Borgia, B.G. Brunetti, F. Cariati, P. Fermo, M. Mellini, A. Sgamellotti and C. Vitti: Journal of the American Ceramic Society Vol. 84 (2001), p.442.

DOI: 10.1111/j.1151-2916.2001.tb00674.x

Google Scholar

[22] P. Fredrickx, D. Hélary, D. Schryvers and E. Darque-Ceretti: Applied Physics A: Materials Science & Processing Vol. 79 (2004), p.283.

DOI: 10.1007/s00339-004-2515-3

Google Scholar

[23] J. Roqué, J. Molera, P. Sciau, E. Pantos and A. Vendrell-Saz: Journal of the European Ceramic Society Vol. 26 (2006), p.3813.

DOI: 10.1016/j.jeurceramsoc.2005.12.024

Google Scholar

[24] J. Roqué, J. Molera, J. Pérez-Arantegui, C. Calabuig, J. Portillo and M. Vendrell-Saz: Archaeometry Vol. 49 (2007), p.511.

DOI: 10.1111/j.1475-4754.2007.00317.x

Google Scholar

[25] C. Mirguet, P. Fredrickx, P. Sciau and P. Colomban: Phase Transitions Vol. 81 (2008), p.253.

Google Scholar

[26] D. Chabanne, O. Bobin, M. Schvoerer, C. Ney and P. Sciau, Metallic lustre of glazed ceramics: evolution of decorations, in: I.F. e. Catolico» (Ed. ), 34h International Symposium on Archaeometry, Institucion «Fernando el Catolico» ed., Institucion «Fernando el Catolico», Zaragoza, 2006, p.427.

DOI: 10.1017/s0395264900074497

Google Scholar

[27] J.P. Ngantcha, M. Gerland, Y. Kihn and A. Rivière: The European Physical Journal Applied Physics Vol. 29 (2005), p.83.

Google Scholar

[28] S. Padovani, D. Puzzovio, P. Mazzoldi, I. Borgia, A. Sgamellotti, B.G. Brunetti, L. Cartechini, F. D'Acapito, C. Maurizio, F. Shokouhi, P. Oliaiy, J. Rahighi, M. Lamehi-Rachti and E. Pantos: Applied Physics A: Materials Science & Processing Vol. 83 (2006).

DOI: 10.1007/s00339-006-3558-4

Google Scholar