Study of Nanocrystalline SnO2 Particles Formed during the Corrosion Processes of Ancient Amalgam Mirrors

Article Preview

Abstract:

The ancient mirror amalgam is a two-phase system: crystals of tin-mercury compounds surrounded by a mercury-rich liquid phase. Corrosion of the amalgam mirrors produces tin dioxide and tin monoxide and releases liquid mercury from the solid phase. The objectives of this study were to characterise the formation of the SnO2 nanometric particles in the alteration processes of ancient amalgam mirrors. Using grazing incidence X-ray diffraction, a depth profile analysis of the sample was performed. The morphology of the amalgam layer was studied by scanning electron microscopy (SEM), and transmission electron microscopy (TEM) was used to study the size and morphology of the particles. Elemental analysis of the amalgam was done by energy dispersive X-ray spectrometry (EDX). The SnO2 phase was straightforwardly identified by XRD using different incidence angles. The average crystalline size of the nanoparticles was evaluated using the Scherrer formula and was estimated in the range of 4 to 5 nm, which was in good agreement with the size estimated by TEM. The electron diffraction pattern of the nanoparticles could be indexed to the cassiterite (SnO2) structure, which is the most typical and stable corrosion product of tin.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-107

Citation:

Online since:

September 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Torvela and S. Leppävuori: Intern. High Technol. Ceram. Vol. 3 (1987), p.309.

Google Scholar

[2] A. Cirera, A. Vila, A. Dieguez, A. Cabot, A. Cornet, and J.R. Morante: Sens. Actuators, B. Vol. 64 (2000), p.65.

Google Scholar

[3] S. Chappel and A. Zaban: Sol. Energy Mater. Sol. Cells. Vol. 71 (2002), p.141.

Google Scholar

[4] D. Aurbach, A. Nimberger, B. Markovsky, E. Levi, E. Sominsky, and A. Gedanken: Chem. Mater. Vol. 14 (2002), p.4155.

Google Scholar

[5] M. Miyauchy, A. Nakajima, T. Watanable, and K. Hashimoto: Chem. Mater. Vol. 14 (2002), p.2812.

Google Scholar

[6] Y. Rusen and W. Zhong. Lin: J. Am. Chem. Soc. Vol. 128 (2006) p.1466.

Google Scholar

[7] A. P. Alivisatos: J. Phys. Chem. Vol. 100 (1996), p.13236.

Google Scholar

[8] L.M. Cukov, T. Tsuzuki, and. McCormick : Scr. Mater. Vol. 44 (2001), p.1787.

Google Scholar

[9] M. Ocaña, C.J. Serna, and E. Matijevic: Mater Lett. Vol. 12 (1991), p.32.

Google Scholar

[10] K.C. Song, J.H. Kim: Powder Technol. Vol. 107 (2000), p.268.

Google Scholar

[11] M. Tite,T. Pradell, and A. Shortland: Archeometry Vol. 50 (2008), p.67.

Google Scholar

[12] J. Molera, T. Pradell, N. Salvadó, N., and M. Vendrell-Saz: J. Am. Ceram. Soc. Vol. 82 (1999), p.2871.

Google Scholar

[13] C. Wang, B. Lu, J. Zuo, S. Zhang, S. Tan, M. Suzuki, and W.T. Chase: Nanostruct. Mater. Vol. 5 (1995), p.489.

Google Scholar

[14] F. Morser, The Glass Industry. (1961), p.244.

Google Scholar

[15] P. Hadsund: Stud Conserv. Vol. 38 (1993), p.3.

Google Scholar

[16] J.M. F Navarro. El Vidrio. 3nd Ed., (CSIC publications, Madrid 2003).

Google Scholar

[17] L. K Herrera, A. Duran, M. L Franquelo, M.C. Jimenez de Haro, A. Justo, J. L PerezRodriguez: J. Cult. Herit. (2008), p e41-e46.

Google Scholar

[18] L.K. Herrera, A. Duran, M.L. Franquelo, A. Justo, and J.L. Perez-Rodriguez: J. Non-Cryst. Solids (2009) in press.

Google Scholar

[19] L.K. Herrera, A. Duran, M.L. Franquelo, A. R González-Elipe, J. P Espinós, Rubio-Zuazo. J, A. Justo, and J.L. Perez-Rodriguez: Cent. Eur. J. Chem. Vol 7 (2009) pp.47-53.

DOI: 10.2478/s11532-008-0089-1

Google Scholar

[20] I. De Ryck, E. Van Biezen, K. Leyssens, A. Adriaens, P. Storme, and F. Adams: J. Cult. Herit. Vol. 5 (2004), p.189.

DOI: 10.1016/j.culher.2003.10.002

Google Scholar

[21] L. Robbiola, K. Rahmouni, C. Chiavari, C. Martini, D. Prandstraller, A. Texier, H. Takenouti, and P. Vermaut: Appl. Phys. A: Mater. Sci. Process. Vol. 92 (2008), p.161.

DOI: 10.1007/s00339-008-4468-4

Google Scholar

[22] R. A Ramik, R. M Organ, and J. A Mandarino: Can. Mineral. Vol. 41 (2003), p.649.

Google Scholar

[23] L.K. Herrera, A Duran, M. C Jimenez de Haro, J. L Perez-Rodriguez and A. Justo: Coalition Electronic Newsletter. Vol. 14 (2007) p.10.

Google Scholar

[24] S. E Dunkle, J.R. Craig, J.D. Rimstidt, and W. R Lusardi: Geoarchaeology. Vol. 19 (2004), p.531.

Google Scholar

[25] H. Strandberg, L-G Johansson, and O. Lindqvist: Werkst korros. Vol. 48 (1997), p.721.

Google Scholar

[26] L. Robbiola, J-M Blengino, and C. Fiaud: Corros. Sci. Vol. 40 (1998), p (2083).

Google Scholar

[27] J.L. Perez-Rodriiguez, A. Wiewiora, V. Ramirez-Valle, V., A. Durán, and L .A. PérezMaqueda, L. A: J. Phys. Chem. Solids. Vol. 68 (2007) p.1225.

Google Scholar

[28] T. Krishnakumar, N. Pinna, K. Prasanna, K. Perumal, and R. Jayaprakash: Mater Lett. Vol. 62 (2008), p.3437.

Google Scholar

[29] T.B. Massalsky (ed. ) in: Binary Alloys Phase Diagrams, Vol. 3 Edn. (ASM International, Metals Park, Ohio, 1992).

Google Scholar

[30] V.F. Degtyareva: Phys. Rev. B: Condens. Matter. Vol. 59 (1999), p.6058.

Google Scholar

[31] G.C. Che, M. Ellner, K. Schubert,: J. Mater. Sci. Lett. Vol 26 (1991) p.2417.

Google Scholar

[32] X. Liujiang, Q. Dong, T. Xincun, and C. Chunjiao: Mater. Chem. Phys. Vol. 108 (2008), p.232.

Google Scholar

[33] Y.D. Wang, C.L. Ma, H.D. Li, and S. Zhang: Mater. Chem. Phys. Vol. 107 (2008) p.248.

Google Scholar