Magnetic Nitrogen-Doped Fe3C@ c Catalysts for Efficient Activation of Peroxymonosulfate for Degradation of Organic Pollutants

Article Preview

Abstract:

Recoverable and stable nanocatalysts are essential for peroxymonosulfate - based advanced oxidation processes (AOPs) in wastewater purification treatment. In this paper, Fe3C nanorods @ nitrogen-doped carbon composites (N-Fe3C@C) with core-shell architecture were fabricated by the co-precipitation and calcination methods, and characterized and analyzed in terms of their crystal structure, microscopic morphology, and surface chemical elements. In addition, N-Fe3C@C-4 degraded 85.36% of tetracycline in 10 min under PMS, which was much higher than the catalytic ability of Fe3O4 (42.03% in 10 min). Both the active radical trapping and EPR experiments verified that 1O2 played a key role for degradation of organic dyes in PMS system. The investigation on the degradation mechanism revealed that the presence of the carbon layer facilitated to adsorb TC, accelerate free radical generation and promote the redox cycle of Fe2+/Fe3+ in the nanocatalyst. This study offers novel ideas for multifunctional catalysts for advanced wastewater purification treatment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-32

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Zhang, J. Wang, Y. Zhang, J. Ma, L. Huang, S. Yu, L. Chen, G. Song, M. Qiu, X. Wang, Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review, Environ. Pollut, 291 (2021) 118076.

DOI: 10.1016/j.envpol.2021.118076

Google Scholar

[2] A.O. Adeola, B.A. Abiodun, D.O. Adenuga, P.N. Nomngongo, Adsorptive and photocatalytic remediation of hazardous organic chemical pollutants in aqueous medium: A review, J. Contam. Hydrol. 248 (2022) 104019.

DOI: 10.1016/j.jconhyd.2022.104019

Google Scholar

[3] D. Li, S. Zhang, S. Li, J. Tang, T. Hua, F. Li, Mechanism of the application of single-atom catalyst-activated PMS/PDS to the degradation of organic pollutants in water environment: A review, J. Clean. Prod. 397 (2023) 136468.

DOI: 10.1016/j.jclepro.2023.136468

Google Scholar

[4] J. Li, W. Zhu, Y. Gao, P. Lin, J. Liu, J. Zhang, T. Huang, The catalyst derived from the sulfurized Co-doped metal-organic framework (MOF) for peroxymonosulfate (PMS) activation and its application to pollutant removal, Sep. Purif. 285 (2022) 120362.

DOI: 10.1016/j.seppur.2021.120362

Google Scholar

[5] Y. Yao, Y. Hu, H. Hu, L. Chen, M. Yu, M. Gao, S. Wang, Metal-free catalysts of graphitic carbon nitride-covalent organic frameworks for efficient pollutant destruction in water, J. Colloid Interface Sci. 554 (2019) 376-387.

DOI: 10.1016/j.jcis.2019.07.002

Google Scholar

[6] X. Hong, Y. Zhao, R. Zhuang, J. Liu, G. Guo, J. Chen, Y. Yao, Bioremediation of tetracycline antibiotics-contaminated soil by bioaugmentation, RSC Adv. 10 (2020) 33086.

DOI: 10.1039/d0ra04705h

Google Scholar

[7] M. Atif, H.Z. Haider, R. Bongiovanni, M. Fayyaz, T. Razzaq, S. Gul, Physisorption and chemisorption trends in surface modification of carbon black, Surf. Interfaces, 31 (2022) 102030.

DOI: 10.1016/j.surfin.2022.102080

Google Scholar

[8] M. Zhang, Z. Zhang, S. Liu, Y. Peng, J. Chen, S.Y. Ki, Ultrasound-assisted electrochemical treatment for phenolic wastewater, Ultrason Sonochem, 65 (2020) 105058.

DOI: 10.1016/j.ultsonch.2020.105058

Google Scholar

[9] P. Wu, L. Xie, W. Mo, B. Wang, H. Ge, X. Sun, Y. Tian, R. Zhao, F. Zhu, Y. Zhang, Y. Wang, The biodegradation of carbaryl in soil with Rhodopseudomonas capsulata in wastewater treatment effluent, J. Environ. Manage. 249 (2019) 109226.

DOI: 10.1016/j.jenvman.2019.06.127

Google Scholar

[10] Y. Deng, R. Zhao, Advanced Oxidation Processes (AOPs) in Wastewater Treatment, Curr. Pollut. Rep. 1 (2015) 167-176.

DOI: 10.1007/s40726-015-0015-z

Google Scholar

[11] M.P. Rayaroth, C.T. Aravindakumar, N.S. Shah, G. Boczkaj, Advanced oxidation processes (AOPs) based wastewater treatment-unexpected nitration side reactions - a serious environmental issue: A review, Chem. Eng. J. 430 (2022) 133002.

DOI: 10.1016/j.cej.2021.133002

Google Scholar

[12] X. Yi, T. Wang, H. Chu, Y. Gao, C. Wang, Y. Li, L. Chen, P. Wang, H. Fu, C. Zhao, W. Liu, Effective elimination of tetracycline antibiotics via photoactivated SR-AOP over vivianite: A new application approach of phosphorus recovery product from WWTP, Chem. Eng. J. 449 (2022) 137784.

DOI: 10.1016/j.cej.2022.137784

Google Scholar

[13] Y. Wu, Y. Li, T. Zhao, X. Wang, V.I. Isaeva, L.M. Kustov, J. Yao, J. Gao, Bimetal-organic framework-derived nanotube@cellulose aerogels for peroxymonosulfate (PMS) activation, Carbohydr. Polym. 296 (2022) 119969.

DOI: 10.1016/j.carbpol.2022.119969

Google Scholar

[14] C. Wang, J. Zhao, C. Chen, P. Na, Catalytic activation of PS/PMS over Fe-Co bimetallic oxides for phenol oxidation under alkaline conditions, Appl. Surf. Sci. 562 (2021) 150134.

DOI: 10.1016/j.apsusc.2021.150134

Google Scholar

[15] X. Huang, C. Liu, Z. Zhang, V. Vasanthakumar, H. Ai, L. Xu, M. Fu, B. Yuan, Stable Cu-Co/C carbon-based composites for efficiency catalytic degradation of Orange II by PMS: Effect factors, application potential analysis, and mechanism, J Ind Eng Chem, 126 (2023) 307-316.

DOI: 10.1016/j.jiec.2023.06.021

Google Scholar

[16] L. Yang, X. Shan, Y. Zhao, Z. Xiao, Q. An, S. Zhai, Efficient phosphate capture of Fe3O4/UiO-66-NH2/CeO2 in wide pH spectrum, Microporous Mesoporous Mater. 331 (2022) 111653.

DOI: 10.1016/j.micromeso.2021.111653

Google Scholar

[17] X. Yang, C. Li, J. Huang, Y. Liu, W. Chen, J. Shen, Y. Zhu, C. Li, Nitrogen-doped Fe3C@C particles as an efficient heterogeneous photo-assisted Fenton catalyst, RSC Adv. 7 (2017) 15168.

DOI: 10.1039/c7ra00486a

Google Scholar

[18] J. Shen, Y. Zhu, K. Zhou, X. Yang, C. Li, Tailored anisotropic magnetic conductive film assembled from graphene-encapsulated multifunctional magnetic composite microspheres, J. Mater. Chem. 22 (2012) 545.

DOI: 10.1039/c1jm13216d

Google Scholar

[19] M. Lo Faro, R.M. Reis, G.G.A. Saglietti, V.L. Oliveira, S.C. Zignani, S. Trocino, S. Maisano, E.A. Ticianelli, N. Hodnik, F. Ruiz-Zepeda, A.S. Aricò, Solid oxide fuel cells fed with dry ethanol: The effect of a perovskite protective anodic layer containing dispersed Ni-alloy @ FeOx core-shell nanoparticles, Appl. Catal. B, 220 (2018) 98-110.

DOI: 10.1016/j.apcatb.2017.08.010

Google Scholar

[20] C. Han, Y. Wang, Y. Lei, B. Wang, N. Wu, Q. Shi, Q. Li, In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation, Nano Res. 8 (2015) 1199-1209.

DOI: 10.1007/s12274-014-0600-2

Google Scholar

[21] X. Du, H. Liu, Y. Mai, Ultrafast Synthesis of Multifunctional N‑DopedGraphene Foam in an Ethanol Flame, ACS Nano, 10 (2016) 453-462.

DOI: 10.1021/acsnano.5b05373

Google Scholar

[22] G. Zhang, Y. Ding, W. Nie, H. Tang, Efficient degradation of drug ibuprofen through catalytic activation of peroxymonosulfate by Fe3C embedded on carbon, J Environ Sci (China), 78 (2019) 1-12.

DOI: 10.1016/j.jes.2018.10.002

Google Scholar

[23] Y. Liu, Q. You, X. Yang, G. Liao, D. Wang, Nitrogen rich hollow carbon spheres with well-developed mesoporous: An efficient adsorbent for tetracycline removal. Chem. Eng. J. 10 (2022) 107043.

DOI: 10.1016/j.jece.2021.107043

Google Scholar

[24] Y. Long, S. Bu, Y. Huang, Y. Shao, L. Xiao, X. Shi, N-doped hierarchically porous carbon for highly efficient metal-free catalytic activation of peroxymonosulfate in water: A non-radical mechanism, Chemosphere, 216 (2019) 545-555.

DOI: 10.1016/j.chemosphere.2018.10.175

Google Scholar

[25] X. Wang, Y. Qin, L. Zhu, H. Tang, Nitrogen-Doped Reduced Graphene Oxide as a Bifunctional Materialfor Removing Bisphenols: Synergistic Effect between Adsorption andCatalysis, Environ. Sci. Technol. 49 (2015) 6855-6864.

DOI: 10.1021/acs.est.5b01059

Google Scholar

[26] J. Zhou, X. Li, J. Yuan, Z. Wang, Efficient degradation and toxicity reduction of tetracycline by recyclable ferroferric oxide doped powdered activated charcoal via peroxymonosulfate (PMS) activation, Chem. Eng. J. 441 (2022) 136061.

DOI: 10.1016/j.cej.2022.136061

Google Scholar

[27] S. Xue, Z. Xie, X. Ma, Y. Xu, S. Zhang, Q. Jia, R. Wan, H. Tao, Insights into the singlet oxygen mechanism of Fe-doped activated carbon for Rhodamine B advanced oxidation, Microporous Mesoporous Mater. 337 (2022) 111948.

DOI: 10.1016/j.micromeso.2022.111948

Google Scholar

[28] Y. Li, T. Yang, S. Qiu, W. Lin, J. Yan, S. Fan, Q. Zhou, Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species, Chem. Eng. J. 389 (2020) 124382.

DOI: 10.1016/j.cej.2020.124382

Google Scholar

[29] H. Yan, Y. Pan, X. Liao, Y. Zhu, R. Huan, C. Pa, Metal organic framework derived CuSx/C with plentiful S-vacancies for efficient heterogenous activation of peroxymonosulfate, Appl. Surf. Sci. 607 (2023) 155009.

DOI: 10.1016/j.apsusc.2022.155009

Google Scholar

[30] S. Han, P. Xiao, L. An, D. Wu, Oxidative degradation of tetracycline using peroxymonosulfate activated by cobalt doped pomelo peel carbon composite, Environ. Sci. Pollut. Res. 29 (2022) 21656-21669.

DOI: 10.1007/s11356-021-17391-9

Google Scholar

[31] Y. Wang, C. Liu, Y. Zhang, W. Meng, B. Yu, S. Pu, D. Yuan, F. Qi, B. Xue, W. Chu, Sulfate radical-based photo-Fenton reaction derived by CuBi2O4 and its composites with α-Bi2O3 under visible light irradiation: Catalyst fabrication, performance and reaction mechanism, Appl. Catal. B, 235 (2018) 264-273.

DOI: 10.1016/j.apcatb.2018.04.058

Google Scholar

[32] X. Zhou, C. Luo, M. Luo, Q. Wang, J. Wang, Z. Liao, Z. Chen, Z. Chen, Understanding the synergetic effect from foreign metals in bimetallic oxides for PMS activation: A common strategy to increase the stoichiometric efficiency of oxidants, Chem. Eng. J. 381 (2020) 122587.

DOI: 10.1016/j.cej.2019.122587

Google Scholar

[33] R. Yuan, L. Hu, P. Yu, H. Wang, Z. Wang, J. Fang, Nanostructured Co3O4 grown on nickel foam: An efficient and readily recyclable 3D catalyst for heterogeneous peroxymonosulfate activation, Chemosphere, 198 (2018) 204-215.

DOI: 10.1016/j.chemosphere.2018.01.135

Google Scholar

[34] Y. Long, S. Li, Y. Su, S. Wang, S. Zhao, S. Wang, Z. Zhang, W. Huang, Y. Liu, Z. Zhang, Sulfur-containing iron nanocomposites confined in S/N co-doped carbon for catalytic peroxymonosulfate oxidation of organic pollutants: Low iron leaching, degradation mechanism and intermediates, Chem. Eng. J. 404 (2021) 126499.

DOI: 10.1016/j.cej.2020.126499

Google Scholar

[35] Y. Huang, C. Han, Y. Liu, M.N. Nadagouda, L. Machala, K.E. O'Shea, V.K. Sharma, D.D. Dionysiou, Degradation of atrazine by ZnxCu1−xFe2O4 nanomaterial-catalyzed sulfite under UV–vis light irradiation: Green strategy to generate SO●- 4, Appl. Catal. B, 221 (2018) 380-392.

DOI: 10.1016/j.apcatb.2017.09.001

Google Scholar

[36] M. Nie, C. Yan, M. Li, X. Wang, W. Bi, W. Dong, Degradation of chloramphenicol by persulfate activated by Fe2+ and zerovalent iron, Chem. Eng. J. 279 (2015) 507-515.

DOI: 10.1016/j.cej.2015.05.055

Google Scholar

[37] M. Nie, Y. Yang, Z. Zhang, C. Yan, X. Wang, H. Li, W. Dong, Degradation of chloramphenicol by thermally activated persulfate in aqueous solution, Chem. Eng. J. 246 (2014) 373-382.

DOI: 10.1016/j.cej.2014.02.047

Google Scholar

[38] A.M. Dugandžić, A.V. Tomašević, M.M. Radišić, N.Ž. Šekuljica, D.Ž. Mijin, S.D. Petrović, Effect of inorganic ions, photosensitisers and scavengers on the photocatalytic degradation of nicosulfuron, J. Photochem. Photobiol. A, 336 (2017) 146-155.

DOI: 10.1016/j.jphotochem.2016.12.031

Google Scholar

[39] J. Wei, D. Han, J. Bi, J. Gong, Fe-doped ilmenite CoTiO3 for antibiotic removal: Electronic modulation and enhanced activation of peroxymonosulfate, Chem. Eng. J. 423 (2021) 130165.

DOI: 10.1016/j.cej.2021.130165

Google Scholar

[40] X. Li, Z. Wang, B. Zhang, A.I. Rykova, M.A. Ahmed, J. Wang, FexCo3−xO4 nanocages derived from nanoscale metal–organic frameworks for removal of bisphenol A by activation of peroxymonosulfate, Appl. Catal. B, 181 (2016) 788-799.

DOI: 10.1016/j.apcatb.2015.08.050

Google Scholar

[41] H. Yan, Y. Pan, X. Liao, Y. Zhu, R. Huang, C. Pan, Significantly enhanced Fenton-based oxidation processes with CuS-Cu9S8 as co-catalyst by accelerating the Fe3+/Fe2+cycles, Appl. Surf. Sci. 559 (2021) 149952.

DOI: 10.1016/j.apsusc.2021.149952

Google Scholar

[42] F. Wang, M. Xiao, X. Ma, S. Wu, M. Ge, X. Yu, Insights into the transformations of Mn species for peroxymonosulfate activation by tuning the Mn3O4 shapes, Chem. Eng. J. 404 (2021) 127097.

DOI: 10.1016/j.cej.2020.127097

Google Scholar

[43] S. Ding, J. Wan, Y. Ma, Y. Wang, M. Pu, X. Li, J. Sun, Water stable SiO2-coated Fe-MOF-74 for aqueous dimethyl phthalate degradation in PS activated medium, J. Hazard. Mater. 411 (2021) 125194.

DOI: 10.1016/j.jhazmat.2021.125194

Google Scholar

[44] H. Li, Z. Yang, S. Lu, L. Su, C. Wang, J. Huang, J. Zhou, J. Tang, M. Huang, Nano-porous bimetallic CuCo-MOF-74 with coordinatively unsaturated metal sites for peroxymonosulfate activation to eliminate organic pollutants: Performance and mechanism, Chemosphere, 273 (2021) 129643.

DOI: 10.1016/j.chemosphere.2021.129643

Google Scholar

[45] S. Gao, H. Zhou, Y. Xia, X. Liu, Y. Yao, W. Wang, H. Chen, Carbon fiber-assisted iron carbide nanoparticles as an efficient catalyst via peroxymonosulfate activation for organic contaminant removal, Catal. Sci. Technol. 9 (2019) 4365-4373.

DOI: 10.1039/c9cy00756c

Google Scholar

[46] Z. Wang, Z. Zhu, G. Wang, X. Ma, W. Lu, Iron (II) phthalocyanine loaded tourmaline efficiently activates PMS to degrade pharmaceutical contaminants under solar light, Environ. Technol. 44(2023) 3491-3503.

DOI: 10.1080/09593330.2022.2064236

Google Scholar

[47] C. Tan, X. Cheng, T. Xu, K. Chen, H. Xiang, L. Su, Crystalline boron significantly accelerates Fe(III)/PMS reaction as an electron donor: Iron recycling, reactive species generation, and acute toxicity evaluation, Chem. Eng. J. 452 (2023) 139154.

DOI: 10.1016/j.cej.2022.139154

Google Scholar

[48] H. Peng, R. Chen, N. Tao, Y. Xiao, C. Li, T. Zhang, M. Ye, MoS2 boosts the Fe2+/PMS process for carbamazepine degradation, Environ. Sci. Pollut. Res. 29 (2022) 49267-49278.

DOI: 10.1007/s11356-022-19172-4

Google Scholar