[1]
S. Zhang, J. Wang, Y. Zhang, J. Ma, L. Huang, S. Yu, L. Chen, G. Song, M. Qiu, X. Wang, Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review, Environ. Pollut, 291 (2021) 118076.
DOI: 10.1016/j.envpol.2021.118076
Google Scholar
[2]
A.O. Adeola, B.A. Abiodun, D.O. Adenuga, P.N. Nomngongo, Adsorptive and photocatalytic remediation of hazardous organic chemical pollutants in aqueous medium: A review, J. Contam. Hydrol. 248 (2022) 104019.
DOI: 10.1016/j.jconhyd.2022.104019
Google Scholar
[3]
D. Li, S. Zhang, S. Li, J. Tang, T. Hua, F. Li, Mechanism of the application of single-atom catalyst-activated PMS/PDS to the degradation of organic pollutants in water environment: A review, J. Clean. Prod. 397 (2023) 136468.
DOI: 10.1016/j.jclepro.2023.136468
Google Scholar
[4]
J. Li, W. Zhu, Y. Gao, P. Lin, J. Liu, J. Zhang, T. Huang, The catalyst derived from the sulfurized Co-doped metal-organic framework (MOF) for peroxymonosulfate (PMS) activation and its application to pollutant removal, Sep. Purif. 285 (2022) 120362.
DOI: 10.1016/j.seppur.2021.120362
Google Scholar
[5]
Y. Yao, Y. Hu, H. Hu, L. Chen, M. Yu, M. Gao, S. Wang, Metal-free catalysts of graphitic carbon nitride-covalent organic frameworks for efficient pollutant destruction in water, J. Colloid Interface Sci. 554 (2019) 376-387.
DOI: 10.1016/j.jcis.2019.07.002
Google Scholar
[6]
X. Hong, Y. Zhao, R. Zhuang, J. Liu, G. Guo, J. Chen, Y. Yao, Bioremediation of tetracycline antibiotics-contaminated soil by bioaugmentation, RSC Adv. 10 (2020) 33086.
DOI: 10.1039/d0ra04705h
Google Scholar
[7]
M. Atif, H.Z. Haider, R. Bongiovanni, M. Fayyaz, T. Razzaq, S. Gul, Physisorption and chemisorption trends in surface modification of carbon black, Surf. Interfaces, 31 (2022) 102030.
DOI: 10.1016/j.surfin.2022.102080
Google Scholar
[8]
M. Zhang, Z. Zhang, S. Liu, Y. Peng, J. Chen, S.Y. Ki, Ultrasound-assisted electrochemical treatment for phenolic wastewater, Ultrason Sonochem, 65 (2020) 105058.
DOI: 10.1016/j.ultsonch.2020.105058
Google Scholar
[9]
P. Wu, L. Xie, W. Mo, B. Wang, H. Ge, X. Sun, Y. Tian, R. Zhao, F. Zhu, Y. Zhang, Y. Wang, The biodegradation of carbaryl in soil with Rhodopseudomonas capsulata in wastewater treatment effluent, J. Environ. Manage. 249 (2019) 109226.
DOI: 10.1016/j.jenvman.2019.06.127
Google Scholar
[10]
Y. Deng, R. Zhao, Advanced Oxidation Processes (AOPs) in Wastewater Treatment, Curr. Pollut. Rep. 1 (2015) 167-176.
DOI: 10.1007/s40726-015-0015-z
Google Scholar
[11]
M.P. Rayaroth, C.T. Aravindakumar, N.S. Shah, G. Boczkaj, Advanced oxidation processes (AOPs) based wastewater treatment-unexpected nitration side reactions - a serious environmental issue: A review, Chem. Eng. J. 430 (2022) 133002.
DOI: 10.1016/j.cej.2021.133002
Google Scholar
[12]
X. Yi, T. Wang, H. Chu, Y. Gao, C. Wang, Y. Li, L. Chen, P. Wang, H. Fu, C. Zhao, W. Liu, Effective elimination of tetracycline antibiotics via photoactivated SR-AOP over vivianite: A new application approach of phosphorus recovery product from WWTP, Chem. Eng. J. 449 (2022) 137784.
DOI: 10.1016/j.cej.2022.137784
Google Scholar
[13]
Y. Wu, Y. Li, T. Zhao, X. Wang, V.I. Isaeva, L.M. Kustov, J. Yao, J. Gao, Bimetal-organic framework-derived nanotube@cellulose aerogels for peroxymonosulfate (PMS) activation, Carbohydr. Polym. 296 (2022) 119969.
DOI: 10.1016/j.carbpol.2022.119969
Google Scholar
[14]
C. Wang, J. Zhao, C. Chen, P. Na, Catalytic activation of PS/PMS over Fe-Co bimetallic oxides for phenol oxidation under alkaline conditions, Appl. Surf. Sci. 562 (2021) 150134.
DOI: 10.1016/j.apsusc.2021.150134
Google Scholar
[15]
X. Huang, C. Liu, Z. Zhang, V. Vasanthakumar, H. Ai, L. Xu, M. Fu, B. Yuan, Stable Cu-Co/C carbon-based composites for efficiency catalytic degradation of Orange II by PMS: Effect factors, application potential analysis, and mechanism, J Ind Eng Chem, 126 (2023) 307-316.
DOI: 10.1016/j.jiec.2023.06.021
Google Scholar
[16]
L. Yang, X. Shan, Y. Zhao, Z. Xiao, Q. An, S. Zhai, Efficient phosphate capture of Fe3O4/UiO-66-NH2/CeO2 in wide pH spectrum, Microporous Mesoporous Mater. 331 (2022) 111653.
DOI: 10.1016/j.micromeso.2021.111653
Google Scholar
[17]
X. Yang, C. Li, J. Huang, Y. Liu, W. Chen, J. Shen, Y. Zhu, C. Li, Nitrogen-doped Fe3C@C particles as an efficient heterogeneous photo-assisted Fenton catalyst, RSC Adv. 7 (2017) 15168.
DOI: 10.1039/c7ra00486a
Google Scholar
[18]
J. Shen, Y. Zhu, K. Zhou, X. Yang, C. Li, Tailored anisotropic magnetic conductive film assembled from graphene-encapsulated multifunctional magnetic composite microspheres, J. Mater. Chem. 22 (2012) 545.
DOI: 10.1039/c1jm13216d
Google Scholar
[19]
M. Lo Faro, R.M. Reis, G.G.A. Saglietti, V.L. Oliveira, S.C. Zignani, S. Trocino, S. Maisano, E.A. Ticianelli, N. Hodnik, F. Ruiz-Zepeda, A.S. Aricò, Solid oxide fuel cells fed with dry ethanol: The effect of a perovskite protective anodic layer containing dispersed Ni-alloy @ FeOx core-shell nanoparticles, Appl. Catal. B, 220 (2018) 98-110.
DOI: 10.1016/j.apcatb.2017.08.010
Google Scholar
[20]
C. Han, Y. Wang, Y. Lei, B. Wang, N. Wu, Q. Shi, Q. Li, In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation, Nano Res. 8 (2015) 1199-1209.
DOI: 10.1007/s12274-014-0600-2
Google Scholar
[21]
X. Du, H. Liu, Y. Mai, Ultrafast Synthesis of Multifunctional N‑DopedGraphene Foam in an Ethanol Flame, ACS Nano, 10 (2016) 453-462.
DOI: 10.1021/acsnano.5b05373
Google Scholar
[22]
G. Zhang, Y. Ding, W. Nie, H. Tang, Efficient degradation of drug ibuprofen through catalytic activation of peroxymonosulfate by Fe3C embedded on carbon, J Environ Sci (China), 78 (2019) 1-12.
DOI: 10.1016/j.jes.2018.10.002
Google Scholar
[23]
Y. Liu, Q. You, X. Yang, G. Liao, D. Wang, Nitrogen rich hollow carbon spheres with well-developed mesoporous: An efficient adsorbent for tetracycline removal. Chem. Eng. J. 10 (2022) 107043.
DOI: 10.1016/j.jece.2021.107043
Google Scholar
[24]
Y. Long, S. Bu, Y. Huang, Y. Shao, L. Xiao, X. Shi, N-doped hierarchically porous carbon for highly efficient metal-free catalytic activation of peroxymonosulfate in water: A non-radical mechanism, Chemosphere, 216 (2019) 545-555.
DOI: 10.1016/j.chemosphere.2018.10.175
Google Scholar
[25]
X. Wang, Y. Qin, L. Zhu, H. Tang, Nitrogen-Doped Reduced Graphene Oxide as a Bifunctional Materialfor Removing Bisphenols: Synergistic Effect between Adsorption andCatalysis, Environ. Sci. Technol. 49 (2015) 6855-6864.
DOI: 10.1021/acs.est.5b01059
Google Scholar
[26]
J. Zhou, X. Li, J. Yuan, Z. Wang, Efficient degradation and toxicity reduction of tetracycline by recyclable ferroferric oxide doped powdered activated charcoal via peroxymonosulfate (PMS) activation, Chem. Eng. J. 441 (2022) 136061.
DOI: 10.1016/j.cej.2022.136061
Google Scholar
[27]
S. Xue, Z. Xie, X. Ma, Y. Xu, S. Zhang, Q. Jia, R. Wan, H. Tao, Insights into the singlet oxygen mechanism of Fe-doped activated carbon for Rhodamine B advanced oxidation, Microporous Mesoporous Mater. 337 (2022) 111948.
DOI: 10.1016/j.micromeso.2022.111948
Google Scholar
[28]
Y. Li, T. Yang, S. Qiu, W. Lin, J. Yan, S. Fan, Q. Zhou, Uniform N-coordinated single-atomic iron sites dispersed in porous carbon framework to activate PMS for efficient BPA degradation via high-valent iron-oxo species, Chem. Eng. J. 389 (2020) 124382.
DOI: 10.1016/j.cej.2020.124382
Google Scholar
[29]
H. Yan, Y. Pan, X. Liao, Y. Zhu, R. Huan, C. Pa, Metal organic framework derived CuSx/C with plentiful S-vacancies for efficient heterogenous activation of peroxymonosulfate, Appl. Surf. Sci. 607 (2023) 155009.
DOI: 10.1016/j.apsusc.2022.155009
Google Scholar
[30]
S. Han, P. Xiao, L. An, D. Wu, Oxidative degradation of tetracycline using peroxymonosulfate activated by cobalt doped pomelo peel carbon composite, Environ. Sci. Pollut. Res. 29 (2022) 21656-21669.
DOI: 10.1007/s11356-021-17391-9
Google Scholar
[31]
Y. Wang, C. Liu, Y. Zhang, W. Meng, B. Yu, S. Pu, D. Yuan, F. Qi, B. Xue, W. Chu, Sulfate radical-based photo-Fenton reaction derived by CuBi2O4 and its composites with α-Bi2O3 under visible light irradiation: Catalyst fabrication, performance and reaction mechanism, Appl. Catal. B, 235 (2018) 264-273.
DOI: 10.1016/j.apcatb.2018.04.058
Google Scholar
[32]
X. Zhou, C. Luo, M. Luo, Q. Wang, J. Wang, Z. Liao, Z. Chen, Z. Chen, Understanding the synergetic effect from foreign metals in bimetallic oxides for PMS activation: A common strategy to increase the stoichiometric efficiency of oxidants, Chem. Eng. J. 381 (2020) 122587.
DOI: 10.1016/j.cej.2019.122587
Google Scholar
[33]
R. Yuan, L. Hu, P. Yu, H. Wang, Z. Wang, J. Fang, Nanostructured Co3O4 grown on nickel foam: An efficient and readily recyclable 3D catalyst for heterogeneous peroxymonosulfate activation, Chemosphere, 198 (2018) 204-215.
DOI: 10.1016/j.chemosphere.2018.01.135
Google Scholar
[34]
Y. Long, S. Li, Y. Su, S. Wang, S. Zhao, S. Wang, Z. Zhang, W. Huang, Y. Liu, Z. Zhang, Sulfur-containing iron nanocomposites confined in S/N co-doped carbon for catalytic peroxymonosulfate oxidation of organic pollutants: Low iron leaching, degradation mechanism and intermediates, Chem. Eng. J. 404 (2021) 126499.
DOI: 10.1016/j.cej.2020.126499
Google Scholar
[35]
Y. Huang, C. Han, Y. Liu, M.N. Nadagouda, L. Machala, K.E. O'Shea, V.K. Sharma, D.D. Dionysiou, Degradation of atrazine by ZnxCu1−xFe2O4 nanomaterial-catalyzed sulfite under UV–vis light irradiation: Green strategy to generate SO●- 4, Appl. Catal. B, 221 (2018) 380-392.
DOI: 10.1016/j.apcatb.2017.09.001
Google Scholar
[36]
M. Nie, C. Yan, M. Li, X. Wang, W. Bi, W. Dong, Degradation of chloramphenicol by persulfate activated by Fe2+ and zerovalent iron, Chem. Eng. J. 279 (2015) 507-515.
DOI: 10.1016/j.cej.2015.05.055
Google Scholar
[37]
M. Nie, Y. Yang, Z. Zhang, C. Yan, X. Wang, H. Li, W. Dong, Degradation of chloramphenicol by thermally activated persulfate in aqueous solution, Chem. Eng. J. 246 (2014) 373-382.
DOI: 10.1016/j.cej.2014.02.047
Google Scholar
[38]
A.M. Dugandžić, A.V. Tomašević, M.M. Radišić, N.Ž. Šekuljica, D.Ž. Mijin, S.D. Petrović, Effect of inorganic ions, photosensitisers and scavengers on the photocatalytic degradation of nicosulfuron, J. Photochem. Photobiol. A, 336 (2017) 146-155.
DOI: 10.1016/j.jphotochem.2016.12.031
Google Scholar
[39]
J. Wei, D. Han, J. Bi, J. Gong, Fe-doped ilmenite CoTiO3 for antibiotic removal: Electronic modulation and enhanced activation of peroxymonosulfate, Chem. Eng. J. 423 (2021) 130165.
DOI: 10.1016/j.cej.2021.130165
Google Scholar
[40]
X. Li, Z. Wang, B. Zhang, A.I. Rykova, M.A. Ahmed, J. Wang, FexCo3−xO4 nanocages derived from nanoscale metal–organic frameworks for removal of bisphenol A by activation of peroxymonosulfate, Appl. Catal. B, 181 (2016) 788-799.
DOI: 10.1016/j.apcatb.2015.08.050
Google Scholar
[41]
H. Yan, Y. Pan, X. Liao, Y. Zhu, R. Huang, C. Pan, Significantly enhanced Fenton-based oxidation processes with CuS-Cu9S8 as co-catalyst by accelerating the Fe3+/Fe2+cycles, Appl. Surf. Sci. 559 (2021) 149952.
DOI: 10.1016/j.apsusc.2021.149952
Google Scholar
[42]
F. Wang, M. Xiao, X. Ma, S. Wu, M. Ge, X. Yu, Insights into the transformations of Mn species for peroxymonosulfate activation by tuning the Mn3O4 shapes, Chem. Eng. J. 404 (2021) 127097.
DOI: 10.1016/j.cej.2020.127097
Google Scholar
[43]
S. Ding, J. Wan, Y. Ma, Y. Wang, M. Pu, X. Li, J. Sun, Water stable SiO2-coated Fe-MOF-74 for aqueous dimethyl phthalate degradation in PS activated medium, J. Hazard. Mater. 411 (2021) 125194.
DOI: 10.1016/j.jhazmat.2021.125194
Google Scholar
[44]
H. Li, Z. Yang, S. Lu, L. Su, C. Wang, J. Huang, J. Zhou, J. Tang, M. Huang, Nano-porous bimetallic CuCo-MOF-74 with coordinatively unsaturated metal sites for peroxymonosulfate activation to eliminate organic pollutants: Performance and mechanism, Chemosphere, 273 (2021) 129643.
DOI: 10.1016/j.chemosphere.2021.129643
Google Scholar
[45]
S. Gao, H. Zhou, Y. Xia, X. Liu, Y. Yao, W. Wang, H. Chen, Carbon fiber-assisted iron carbide nanoparticles as an efficient catalyst via peroxymonosulfate activation for organic contaminant removal, Catal. Sci. Technol. 9 (2019) 4365-4373.
DOI: 10.1039/c9cy00756c
Google Scholar
[46]
Z. Wang, Z. Zhu, G. Wang, X. Ma, W. Lu, Iron (II) phthalocyanine loaded tourmaline efficiently activates PMS to degrade pharmaceutical contaminants under solar light, Environ. Technol. 44(2023) 3491-3503.
DOI: 10.1080/09593330.2022.2064236
Google Scholar
[47]
C. Tan, X. Cheng, T. Xu, K. Chen, H. Xiang, L. Su, Crystalline boron significantly accelerates Fe(III)/PMS reaction as an electron donor: Iron recycling, reactive species generation, and acute toxicity evaluation, Chem. Eng. J. 452 (2023) 139154.
DOI: 10.1016/j.cej.2022.139154
Google Scholar
[48]
H. Peng, R. Chen, N. Tao, Y. Xiao, C. Li, T. Zhang, M. Ye, MoS2 boosts the Fe2+/PMS process for carbamazepine degradation, Environ. Sci. Pollut. Res. 29 (2022) 49267-49278.
DOI: 10.1007/s11356-022-19172-4
Google Scholar