Correlation between Crystallite Characteristics and the Properties of Copper Thin Film Deposited by Magnetron Sputtering: Bias Voltage Effect

Article Preview

Abstract:

This work investigates the properties of copper thin films deposited by magnetron sputtering. The substrate is biased by a negative voltage (Vs), which controls the energy ions bombardment during the deposition of the thin films. In order to focus solely on the ions energy contribution, the power supply was fixed and the working pressure was selected at 5 Pa. This ensures energetic sputtered particles completely thermalized, by a sufficient number of collisions with the Argon gas. X-ray diffraction analysis revealed that substrate voltage Vs affects essentially the structure and size of the formed crystallites. The preferred orientation (111) and the larger crystallite size (30 nm) were achieved at Vs = - 60 V. The Cu (111)/(200) peak intensity ratio is maximal (12.55) at - 60 V, corresponding to the lowest resistivity value (6.33 mW.cm). Optimum corrosion resistance of the deposited thin film was achieved at -60 V. At high crystallite sizes, nanoindentation analysis showed a thin film that is more elastic (133 GPa) and less hard (1.96 GPa).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

65-78

Citation:

Online since:

July 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Adamovich, The 2022 Plasma Roadmap; low temperature plasma science and technology, J. Phys. D: Appl. Phys. 55 (2022) 373001.

Google Scholar

[2] Peter M. Martin, Handbook of Deposition Technologies for Films and Coatings, 3rd Edition - April 1, 2000, Elsevier Inc., ISBN-13: 978-0-8155-2031-3

Google Scholar

[3] J.T. Gudmundsson, Physics and technology of magnetron sputtering discharges; Topical Review, Plasma Sources Sci. Technol. 29 (2020) 113001.

DOI: 10.1088/1361-6595/abb7bd

Google Scholar

[4] R. Tadjine, A. Houimi, M.M. Alim, N. Oudini, Oxygen flow rate effect on copper oxide thin films deposited by radiofrequency magnetron sputtering, Thin Solid Films 741 (2022) 139013.

DOI: 10.1016/j.tsf.2021.139013

Google Scholar

[5] A. le Febvrier, L. Landälv, Th. Liersch, D. Sandmark, P. Sandström, P. Eklund, An upgraded ultra-high vacuum magnetron-sputtering system for high-versatility and software-controlled deposition, Vacuum 187 (2021) 110137.

DOI: 10.1016/j.vacuum.2021.110137

Google Scholar

[6] I. Banerjee, Neelam Kumari, Ashis K. Singh, Mukesh Kumar, Pinaki Laha, A.B. Panda, S.K. Pabi, P.K. Barhai, S.K. Mahapatra, Influence of RF power on the electrical and mechanical properties of nano-structured carbon nitride thin films deposited by RF magnetron sputtering, Thin Solid Films 518 (2010) 7240-244.

DOI: 10.1016/j.tsf.2010.05.002

Google Scholar

[7] Q.-P. Wei, X.-W. Zhang, D.-Y. Liu, J. Li, K.-C. Zhou, D. Zhang, Z.-.M. Yu, Effects of sputtering pressure on nanostructure and nanomechanical properties of AlN films prepared by RF reactive sputtering, Trans. Nonferrous Met. Soc. China 24 (2014) 2845-2855.

DOI: 10.1016/s1003-6326(14)63417-8

Google Scholar

[8] R. Wuhrer, W.Y. Yeung, Effect of target–substrate working distance on magnetron sputter deposition of nanostructured titanium aluminium nitride coatings, Scripta Materialia 49 (2003) 199-205.

DOI: 10.1016/s1359-6462(03)00264-1

Google Scholar

[9] N.W. Schmidt, Th.S. Totushek, W.A. Kimes, D.R. Callender, and J.R. Doyle, Effects of substrate temperature and near-substrate plasma density on the properties of dc magnetron sputtered aluminum doped zinc oxide, J. Appl. Phys. 94 (2003) 5514.

DOI: 10.1063/1.1615694

Google Scholar

[10] Eiji Kusano, Structure-Zone Modeling of Sputter-Deposited Thin Films: A Brief Review, Appl. Sci. Converg. Technol. 28 (6) (2019) 179-185.

DOI: 10.5757/asct.2019.28.6.179

Google Scholar

[11] A.-L. Thomann, A. Caillard, M. Raza, M. El Mokh, P.A. Cormier, S. Konstantinidis, Energy flux measurements during magnetron sputter deposition processes, Surf. Coat. Technol. 377 (2019) 124887.

DOI: 10.1016/j.surfcoat.2019.08.016

Google Scholar

[12] R. Godiwal, A.K. Gangwar, J. Jaiswal, P. Vashishtha, M. Hossain, P. Pal, G. Gupta and P. Singh, Influence of magnetron configurations on the structure and properties of room temperature sputtered ZnO thin films, Phys. Scr. 96 (2021) 015811.

DOI: 10.1088/1402-4896/abcc1b

Google Scholar

[13] B. Window, G.L. Harding, Ion assisting magnetron sources; Principles and uses, J. Vac. Sci. Technol. A 8 (1990) 1277.

Google Scholar

[14] X.Y. Zhong, Y.C. Chen, N.H. Tai, I.N. Lin, J.M. Hiller, O. Auciello, Effect of pretreatment bias on the nucleation and growth mechanisms of ultra nanocrystalline diamond films via bias-enhanced nucleation and growth: An approach to interfacial chemistry analysis via chemical bonding mapping, J. Appl. Phys. 105 (2009) 034311.

DOI: 10.1063/1.3068366

Google Scholar

[15] J.A. Thornton and J.E. Greene, in Handbook of deposition technologies for films and coatings; Science, Technology and Applications, 2nd Ed. (1994), by R. F. Bunshah, University of California at Los Angeles, California, ISBN: 9780815517467

Google Scholar

[16] A. Revel, A. El Farsy, L. de Poucques, J. Robert and T. Minea, Transition from ballistic to thermalized transport of metal-sputtered species in a DC magnetron, Plasma Sources Sci. Technol. 30 (2021) 125005.

DOI: 10.1088/1361-6595/ac352b

Google Scholar

[17] M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd Edition John Wiley & Sons, Inc. (2005) ISBN 0-471-72001-1

Google Scholar

[18] A. Baptista, F.J.G. Silva, J. Porteiro, J.L. Míguez, G. Pinto, L. Fernandes, On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications, Procedia Manufacturing 17 (2018) 746-757.

DOI: 10.1016/j.promfg.2018.10.125

Google Scholar

[19] C. Engstrom, T. Berlind, J. Birch, L. Hultman, I.P. Ivanov, S.R. Kirkpatrick, S. Rohde, Design, plasma studies, and ion assisted thin film growth in an unbalanced dual target magnetron sputtering system with a solenoid coil, Vacuum 56 (2000) 107-113.

DOI: 10.1016/s0042-207x(99)00177-3

Google Scholar

[20] H.-S. Seo, T. Lee, H. Kim, I. Petrov, and J.E. Greene, Phase composition of polycrystalline HfNx (0.45 ≤ x ≤ 1.60) and effects of low-energy ion irradiation on microstructure, texture, and physical properties, J. Vac. Sci. Technol. A 41 (2023) 063406.

DOI: 10.1116/6.0003072

Google Scholar

[21] M. Birkholz, C. Genzel, T. Jung, X-ray diffraction study on residual stress and preferred orientation in thin titanium films subjected to a high ion flux during deposition, J. Appl. Phys. 96 (2004) 7202-7211.

DOI: 10.1063/1.1814413

Google Scholar

[22] Z. Gao, J.W. Cao, C. Wang, H.M. Muzammal, W. Wang, H. Sun, H. Ma, Y. Wang, Effect of Cu Preferential Orientation on the Microstructure and Properties of Anodized CuxO Films, Eur. J. Inorg. Chem. 2020 (2020) 261-268.

DOI: 10.1002/ejic.201901084

Google Scholar

[23] H. Ljungcrantz, L. Hultman, J.E. Sundgren, L. Karlsson, Ion induced stress generation in arc‐evaporated TiN films, J. Appl. Phys.78 (1995) 832.

DOI: 10.1063/1.360272

Google Scholar

[24] A. Pandey, S. Dalal, S. Dutta, A. Dixit, Structural characterization of polycrystalline thin films by X-ray diffraction techniques, J Mater Sci: Mater Electron 32 (2021) 1341-1368.

DOI: 10.1007/s10854-020-04998-w

Google Scholar

[25] K. Kamoshida, Y. Ito, Highly preferred (111) texture aluminum-copper films formed with argon plasma treatment of the titanium underlayer and their electromigration endurance as interconnects, J. Vac. Sci. Technol. B 15 (1997) 961.

DOI: 10.1116/1.589515

Google Scholar

[26] B.D. Cullity, Elements of X-ray diffraction, 2nded. Addison Wesley, 1978,ISBN0-201-01174-3

Google Scholar

[27] J. Yun, E. Jeong, G. Zhao, S.-G. Lee, S.M. Yu, J.-S. Bae, S.Z. Han, G.-H. Lee, Y. Ikoma, E.-A. Choi, Unconventional thickness dependence of electrical resistivity of silver film electrodes in substoichiometric oxidation states, Acta Materialia 265 (2024) 119637.

DOI: 10.1016/j.actamat.2023.119637

Google Scholar

[28] H.M. Choi, S.K. Choi, O. Anderson, K. Bange, influence of film density on residual stress and resistivity for Cu thin films deposited by bias sputtering, Thin Solid Films 358 (2000) 202-205.

DOI: 10.1016/s0040-6090(99)00709-9

Google Scholar

[29] R.A. Matula, Electrical resistivity of copper, gold, palladium ad silver, J. Phys. Chem. Ref. Data 8 (1979) 1147.

Google Scholar

[30] J.R. Shi, S.P. Lau, Z. Sun, X. Shi, B.K. Tay, H.S. Tan, Structural and electrical properties of copper thin films prepared by filtered cathodic vacuum arc technique, Surf. Coat. Technol 138 (2001) 250-255.

DOI: 10.1016/s0257-8972(00)01159-2

Google Scholar

[31] P.J. Lin and M.C. Chen, Copper Chemical Vapor Deposition Films Deposited from Cu (1,1,1,5,5,5-hexafluoroacetylacetonate) vinyltrimethylsilane, Jpn J. Apl. Phys 38 (1999) 4863

DOI: 10.1143/jjap.38.4863

Google Scholar

[32] T. Hara, K. Sakata, Y. Yoshida, Control of the (111) Orientation in Copper Interconnection Layer, Electrochem. Solid-State Lett. 5 (3) (2002) C41-C43.

DOI: 10.1149/1.1448186

Google Scholar

[33] Ch.-L. Lin, P.-S. Chen, M.-Ch. Chen, Chemically Vapor Deposited Cu Films on Ar-Plasma-Treated TiN Substrate, Jpn. J. Appl. Phys. 41 (2002) 280-286.

DOI: 10.1143/jjap.41.280

Google Scholar

[34] M.Y. Kwak, D.H. Shin, T.W. Kang, K.N. Kim, Characteristics of TiN barrier layer against Cu diffusion, Thin Solid Film 339 (1999) 290.

DOI: 10.1016/s0040-6090(98)01074-8

Google Scholar

[35] S.-Y. Chun, Bias Voltage Effect on the Properties of TiN Films by Reactive Magnetron Sputtering, Journal of the Korean Physical Society 56 (2010) 1134-139.

DOI: 10.3938/jkps.56.1134

Google Scholar

[36] A. Leyland, A. Matthews, Design criteria for wear-resistant nanostructured and glassy-metal coatings, Surf. Coat. Technol. 177-178 (2004) 317-324.

DOI: 10.1016/j.surfcoat.2003.09.011

Google Scholar

[37] S. Khademorezaian, M. Tomut, M. Peterlechner, M.W. da Silva Pinto, H. Rösner, S. Divinski, G. Wilde, Extreme rejuvenation of a bulk metallic glass at the nanoscale by swift heavy ion irradiation, Journal of Alloys and Compounds, 980 (2024) 173571.

DOI: 10.1016/j.jallcom.2024.173571

Google Scholar

[38] M. Bouchard, D.C. Smith, Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass, Spectrochimica Acta Part A59 (2003) 2247-2266.

DOI: 10.1016/s1386-1425(03)00069-6

Google Scholar

[39] Y.S. Gong, Ch. Lee, and C.K. Yang, Atomic force microscopy and Raman spectroscopy studies on the oxidation of Cu thin films, J. Appl. Phys. 77 (1995) 5422.

DOI: 10.1063/1.359234

Google Scholar

[40] E.M. Pinto, A.S. Ramos, M.T. Vieira, Chr M.A. Brett, A corrosion study of nanocrystalline copper thin films, Corrosion Science 52 (2010) 3891-3895.

DOI: 10.1016/j.corsci.2010.08.001

Google Scholar

[41] M.M. Alim, N. Saoula, R. Tadjine, F. Hadj-Larbi, A. Keffous and M. Kechouane, Improvement in nano-hardness and corrosion resistance of low carbon steel by plasma nitriding with negative DC bias voltage, Eur. Phys. J. Appl. Phys. 75 (2016) 30801.

DOI: 10.1051/epjap/2016160130

Google Scholar