[1]
I. Adamovich, The 2022 Plasma Roadmap; low temperature plasma science and technology, J. Phys. D: Appl. Phys. 55 (2022) 373001.
Google Scholar
[2]
Peter M. Martin, Handbook of Deposition Technologies for Films and Coatings, 3rd Edition - April 1, 2000, Elsevier Inc., ISBN-13: 978-0-8155-2031-3
Google Scholar
[3]
J.T. Gudmundsson, Physics and technology of magnetron sputtering discharges; Topical Review, Plasma Sources Sci. Technol. 29 (2020) 113001.
DOI: 10.1088/1361-6595/abb7bd
Google Scholar
[4]
R. Tadjine, A. Houimi, M.M. Alim, N. Oudini, Oxygen flow rate effect on copper oxide thin films deposited by radiofrequency magnetron sputtering, Thin Solid Films 741 (2022) 139013.
DOI: 10.1016/j.tsf.2021.139013
Google Scholar
[5]
A. le Febvrier, L. Landälv, Th. Liersch, D. Sandmark, P. Sandström, P. Eklund, An upgraded ultra-high vacuum magnetron-sputtering system for high-versatility and software-controlled deposition, Vacuum 187 (2021) 110137.
DOI: 10.1016/j.vacuum.2021.110137
Google Scholar
[6]
I. Banerjee, Neelam Kumari, Ashis K. Singh, Mukesh Kumar, Pinaki Laha, A.B. Panda, S.K. Pabi, P.K. Barhai, S.K. Mahapatra, Influence of RF power on the electrical and mechanical properties of nano-structured carbon nitride thin films deposited by RF magnetron sputtering, Thin Solid Films 518 (2010) 7240-244.
DOI: 10.1016/j.tsf.2010.05.002
Google Scholar
[7]
Q.-P. Wei, X.-W. Zhang, D.-Y. Liu, J. Li, K.-C. Zhou, D. Zhang, Z.-.M. Yu, Effects of sputtering pressure on nanostructure and nanomechanical properties of AlN films prepared by RF reactive sputtering, Trans. Nonferrous Met. Soc. China 24 (2014) 2845-2855.
DOI: 10.1016/s1003-6326(14)63417-8
Google Scholar
[8]
R. Wuhrer, W.Y. Yeung, Effect of target–substrate working distance on magnetron sputter deposition of nanostructured titanium aluminium nitride coatings, Scripta Materialia 49 (2003) 199-205.
DOI: 10.1016/s1359-6462(03)00264-1
Google Scholar
[9]
N.W. Schmidt, Th.S. Totushek, W.A. Kimes, D.R. Callender, and J.R. Doyle, Effects of substrate temperature and near-substrate plasma density on the properties of dc magnetron sputtered aluminum doped zinc oxide, J. Appl. Phys. 94 (2003) 5514.
DOI: 10.1063/1.1615694
Google Scholar
[10]
Eiji Kusano, Structure-Zone Modeling of Sputter-Deposited Thin Films: A Brief Review, Appl. Sci. Converg. Technol. 28 (6) (2019) 179-185.
DOI: 10.5757/asct.2019.28.6.179
Google Scholar
[11]
A.-L. Thomann, A. Caillard, M. Raza, M. El Mokh, P.A. Cormier, S. Konstantinidis, Energy flux measurements during magnetron sputter deposition processes, Surf. Coat. Technol. 377 (2019) 124887.
DOI: 10.1016/j.surfcoat.2019.08.016
Google Scholar
[12]
R. Godiwal, A.K. Gangwar, J. Jaiswal, P. Vashishtha, M. Hossain, P. Pal, G. Gupta and P. Singh, Influence of magnetron configurations on the structure and properties of room temperature sputtered ZnO thin films, Phys. Scr. 96 (2021) 015811.
DOI: 10.1088/1402-4896/abcc1b
Google Scholar
[13]
B. Window, G.L. Harding, Ion assisting magnetron sources; Principles and uses, J. Vac. Sci. Technol. A 8 (1990) 1277.
Google Scholar
[14]
X.Y. Zhong, Y.C. Chen, N.H. Tai, I.N. Lin, J.M. Hiller, O. Auciello, Effect of pretreatment bias on the nucleation and growth mechanisms of ultra nanocrystalline diamond films via bias-enhanced nucleation and growth: An approach to interfacial chemistry analysis via chemical bonding mapping, J. Appl. Phys. 105 (2009) 034311.
DOI: 10.1063/1.3068366
Google Scholar
[15]
J.A. Thornton and J.E. Greene, in Handbook of deposition technologies for films and coatings; Science, Technology and Applications, 2nd Ed. (1994), by R. F. Bunshah, University of California at Los Angeles, California, ISBN: 9780815517467
Google Scholar
[16]
A. Revel, A. El Farsy, L. de Poucques, J. Robert and T. Minea, Transition from ballistic to thermalized transport of metal-sputtered species in a DC magnetron, Plasma Sources Sci. Technol. 30 (2021) 125005.
DOI: 10.1088/1361-6595/ac352b
Google Scholar
[17]
M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd Edition John Wiley & Sons, Inc. (2005) ISBN 0-471-72001-1
Google Scholar
[18]
A. Baptista, F.J.G. Silva, J. Porteiro, J.L. Míguez, G. Pinto, L. Fernandes, On the Physical Vapour Deposition (PVD): Evolution of Magnetron Sputtering Processes for Industrial Applications, Procedia Manufacturing 17 (2018) 746-757.
DOI: 10.1016/j.promfg.2018.10.125
Google Scholar
[19]
C. Engstrom, T. Berlind, J. Birch, L. Hultman, I.P. Ivanov, S.R. Kirkpatrick, S. Rohde, Design, plasma studies, and ion assisted thin film growth in an unbalanced dual target magnetron sputtering system with a solenoid coil, Vacuum 56 (2000) 107-113.
DOI: 10.1016/s0042-207x(99)00177-3
Google Scholar
[20]
H.-S. Seo, T. Lee, H. Kim, I. Petrov, and J.E. Greene, Phase composition of polycrystalline HfNx (0.45 ≤ x ≤ 1.60) and effects of low-energy ion irradiation on microstructure, texture, and physical properties, J. Vac. Sci. Technol. A 41 (2023) 063406.
DOI: 10.1116/6.0003072
Google Scholar
[21]
M. Birkholz, C. Genzel, T. Jung, X-ray diffraction study on residual stress and preferred orientation in thin titanium films subjected to a high ion flux during deposition, J. Appl. Phys. 96 (2004) 7202-7211.
DOI: 10.1063/1.1814413
Google Scholar
[22]
Z. Gao, J.W. Cao, C. Wang, H.M. Muzammal, W. Wang, H. Sun, H. Ma, Y. Wang, Effect of Cu Preferential Orientation on the Microstructure and Properties of Anodized CuxO Films, Eur. J. Inorg. Chem. 2020 (2020) 261-268.
DOI: 10.1002/ejic.201901084
Google Scholar
[23]
H. Ljungcrantz, L. Hultman, J.E. Sundgren, L. Karlsson, Ion induced stress generation in arc‐evaporated TiN films, J. Appl. Phys.78 (1995) 832.
DOI: 10.1063/1.360272
Google Scholar
[24]
A. Pandey, S. Dalal, S. Dutta, A. Dixit, Structural characterization of polycrystalline thin films by X-ray diffraction techniques, J Mater Sci: Mater Electron 32 (2021) 1341-1368.
DOI: 10.1007/s10854-020-04998-w
Google Scholar
[25]
K. Kamoshida, Y. Ito, Highly preferred (111) texture aluminum-copper films formed with argon plasma treatment of the titanium underlayer and their electromigration endurance as interconnects, J. Vac. Sci. Technol. B 15 (1997) 961.
DOI: 10.1116/1.589515
Google Scholar
[26]
B.D. Cullity, Elements of X-ray diffraction, 2nded. Addison Wesley, 1978,ISBN0-201-01174-3
Google Scholar
[27]
J. Yun, E. Jeong, G. Zhao, S.-G. Lee, S.M. Yu, J.-S. Bae, S.Z. Han, G.-H. Lee, Y. Ikoma, E.-A. Choi, Unconventional thickness dependence of electrical resistivity of silver film electrodes in substoichiometric oxidation states, Acta Materialia 265 (2024) 119637.
DOI: 10.1016/j.actamat.2023.119637
Google Scholar
[28]
H.M. Choi, S.K. Choi, O. Anderson, K. Bange, influence of film density on residual stress and resistivity for Cu thin films deposited by bias sputtering, Thin Solid Films 358 (2000) 202-205.
DOI: 10.1016/s0040-6090(99)00709-9
Google Scholar
[29]
R.A. Matula, Electrical resistivity of copper, gold, palladium ad silver, J. Phys. Chem. Ref. Data 8 (1979) 1147.
Google Scholar
[30]
J.R. Shi, S.P. Lau, Z. Sun, X. Shi, B.K. Tay, H.S. Tan, Structural and electrical properties of copper thin films prepared by filtered cathodic vacuum arc technique, Surf. Coat. Technol 138 (2001) 250-255.
DOI: 10.1016/s0257-8972(00)01159-2
Google Scholar
[31]
P.J. Lin and M.C. Chen, Copper Chemical Vapor Deposition Films Deposited from Cu (1,1,1,5,5,5-hexafluoroacetylacetonate) vinyltrimethylsilane, Jpn J. Apl. Phys 38 (1999) 4863
DOI: 10.1143/jjap.38.4863
Google Scholar
[32]
T. Hara, K. Sakata, Y. Yoshida, Control of the (111) Orientation in Copper Interconnection Layer, Electrochem. Solid-State Lett. 5 (3) (2002) C41-C43.
DOI: 10.1149/1.1448186
Google Scholar
[33]
Ch.-L. Lin, P.-S. Chen, M.-Ch. Chen, Chemically Vapor Deposited Cu Films on Ar-Plasma-Treated TiN Substrate, Jpn. J. Appl. Phys. 41 (2002) 280-286.
DOI: 10.1143/jjap.41.280
Google Scholar
[34]
M.Y. Kwak, D.H. Shin, T.W. Kang, K.N. Kim, Characteristics of TiN barrier layer against Cu diffusion, Thin Solid Film 339 (1999) 290.
DOI: 10.1016/s0040-6090(98)01074-8
Google Scholar
[35]
S.-Y. Chun, Bias Voltage Effect on the Properties of TiN Films by Reactive Magnetron Sputtering, Journal of the Korean Physical Society 56 (2010) 1134-139.
DOI: 10.3938/jkps.56.1134
Google Scholar
[36]
A. Leyland, A. Matthews, Design criteria for wear-resistant nanostructured and glassy-metal coatings, Surf. Coat. Technol. 177-178 (2004) 317-324.
DOI: 10.1016/j.surfcoat.2003.09.011
Google Scholar
[37]
S. Khademorezaian, M. Tomut, M. Peterlechner, M.W. da Silva Pinto, H. Rösner, S. Divinski, G. Wilde, Extreme rejuvenation of a bulk metallic glass at the nanoscale by swift heavy ion irradiation, Journal of Alloys and Compounds, 980 (2024) 173571.
DOI: 10.1016/j.jallcom.2024.173571
Google Scholar
[38]
M. Bouchard, D.C. Smith, Catalogue of 45 reference Raman spectra of minerals concerning research in art history or archaeology, especially on corroded metals and coloured glass, Spectrochimica Acta Part A59 (2003) 2247-2266.
DOI: 10.1016/s1386-1425(03)00069-6
Google Scholar
[39]
Y.S. Gong, Ch. Lee, and C.K. Yang, Atomic force microscopy and Raman spectroscopy studies on the oxidation of Cu thin films, J. Appl. Phys. 77 (1995) 5422.
DOI: 10.1063/1.359234
Google Scholar
[40]
E.M. Pinto, A.S. Ramos, M.T. Vieira, Chr M.A. Brett, A corrosion study of nanocrystalline copper thin films, Corrosion Science 52 (2010) 3891-3895.
DOI: 10.1016/j.corsci.2010.08.001
Google Scholar
[41]
M.M. Alim, N. Saoula, R. Tadjine, F. Hadj-Larbi, A. Keffous and M. Kechouane, Improvement in nano-hardness and corrosion resistance of low carbon steel by plasma nitriding with negative DC bias voltage, Eur. Phys. J. Appl. Phys. 75 (2016) 30801.
DOI: 10.1051/epjap/2016160130
Google Scholar