[1]
V. Shvabyuk, H. Sulym, O. Mikulich, Stress state of plate with incisions under the action of oscillating concentrated forces, Acta Mech. Autom, 9(3) (2015) 140–144.
DOI: 10.1515/ama-2015-0023
Google Scholar
[2]
A.V. Goryk, Modeling Transverse Compression of Cylindrical Bodies in Bending, Int. Appl. Mech, 37(9) (2001) 1210‒1221.
Google Scholar
[3]
V.I. Shvab'yuk, Ya.M. Pasternak, S.V. Rotko, Refined solution of the timoshenko problem for an orthotropic beam on a rigid base, Mater. Sci., 46(1) (2010) 56–63.
DOI: 10.1007/s11003-010-9263-7
Google Scholar
[4]
M. Surianinov, T. Yemelianova, O. Shyliaiev, Investigation of free vibrations of three-layered circular shell, supported by annular ribs of rigidity, Mater. Sci. Forum, 968 (2019) 437–443.
DOI: 10.4028/www.scientific.net/msf.968.437
Google Scholar
[5]
W. Zhen, C. Wanji, A global higher-order zig-zag model in terms of the HW variational theorem for multilayered composite beams, Compos. Struct, 158 (2016) 128‒136.
DOI: 10.1016/j.compstruct.2016.09.021
Google Scholar
[6]
D. Zhao, Z. Wu, X. Ren, New Sinusoidal Higher-Order Theory Including the Zig-Zag Function for Multilayered Composite Beams. J. Aerosp. Eng., 32(3) (2019).
DOI: 10.1061/(asce)as.1943-5525.0000994
Google Scholar
[7]
A. Timpe, Probleme der Spannungsverteilung in ebenen Systemen einfach gelöst mit Hilfe der Airyschen Funktion, Z. Math. Physik, 52 (1905) 348‒383.
Google Scholar
[8]
S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, 3rd Edition. McGraw Hill, New York, 1970.
Google Scholar
[9]
C.-X. Zhan, Y.-H. Liu, Plane elasticity solutions for beams with fixed ends, J. Zhejiang Univ.: Sci. A, 16(10) (2015) 805‒819.
DOI: 10.1631/jzus.a1500043
Google Scholar
[10]
S.G. Lekhnitskii, Anisotropic plate. Gordon and Breach, New York, 1968.
Google Scholar
[11]
H.-J. Ding, D.-J. Huang, W.-Q. Chen, Elasticity solutions for plane anisotropic functionally graded beams, Int. J. Solids Struct, 44(1) (2007) 176‒196.
DOI: 10.1016/j.ijsolstr.2006.04.026
Google Scholar
[12]
D.-J. Huang, H.-J. Ding, W.-Q. Chen, Analytical solution for functionally graded anisotropic cantilever beam under thermal and uniformly distributed load, J. Zhejiang Univ.: Sci. A, 8(9) (2007) 1351‒1355.
DOI: 10.1631/jzus.2007.a1351
Google Scholar
[13]
Z. Zhong, T. Yu, Analytical solution of a cantilever functionally graded beam, Compos. Sci. Technol, 67(3-4) (2007) 481‒488.
DOI: 10.1016/j.compscitech.2006.08.023
Google Scholar
[14]
Q. Yang, B.-L. Zheng, K. Zhang, J. Li, Elastic solutions of a functionally graded cantilever beam with different modulus in tension and compression under bending loads, Appl. Math. Model, 38(4) (2014) 1403‒1416.
DOI: 10.1016/j.apm.2013.08.021
Google Scholar
[15]
S. Benguediab, A. Tounsi, H. H. Abdelaziz, M. A. A. Meziane, Elasticity solution for a cantilever beam with exponentially varying properties, J. Appl. Mech. Tech. Phy., 58(2) (2017) 354‒361.
DOI: 10.1134/s0021894417020213
Google Scholar
[16]
M. Wang, Y. Liu, Analytical solution for bi-material beam with graded intermediate layer, Compos. Struct., 92 (2010) 2358‒2368.
DOI: 10.1016/j.compstruct.2010.03.013
Google Scholar
[17]
U. Esendemir, M.R. Usal, M. Usal, The Effects of Shear on the Deflection of Simply Supported Composite Beam Loaded Linearly, J. Reinf. Plast. Compos., 25(8) (2006) 835‒846.
DOI: 10.1177/0731684406065133
Google Scholar
[18]
D.-J. Huang, H.-J. Ding, W.-Q. Chen, Analytical solution for functionally graded anisotropic cantilever beam subjected to linearly distributed load, Appl. Math. Mech., 28(7) (2007) 855‒860.
DOI: 10.1007/s10483-007-0702-1
Google Scholar
[19]
T.H. Daouadji, A.H. Henni, A. Tounsi, A.B. El Abbes, Elasticity Solution of a Cantilever Functionally Graded Beam, Appl. Compos. Mater, 20(1) (2013) 1–15.
DOI: 10.1007/s10443-011-9243-6
Google Scholar
[20]
H.-D. Li, Z.-Y. Mei, X. Zhu, Y.-J. Zhang, Analytical solution of bending of simply supported functionally graded beam subjected to trapeziform pressure, Chuan Bo Li Xue / J. Ship Mech., 19(1-2) (2015) 95‒105.
Google Scholar
[21]
A.V. Goryk, S.B. Kovalchuk, Elasticity theory solution of the problem on plane bending of a narrow layered cantilever bar by loads at its end, Mech. Compos. Mater, 54(2) (2018) 179‒190.
DOI: 10.1007/s11029-018-9730-z
Google Scholar
[22]
A.V. Goryk, S.B. Koval'chuk, Solution of a Transverse Plane Bending Problem of a Laminated Cantilever Beam Under the Action of a Normal Uniform Load, Strength Mate, 50(3) (2018) 406‒418.
DOI: 10.1007/s11223-018-9984-7
Google Scholar
[23]
A.V. Gorik, S.B. Koval'chuk, Solving the Problem of Elastic Bending of a Layered Cantilever Under a Normal Load Linearly Distributed over Longitudinal Faces, Int. Appl. Mech., 56(1) (2020) 65‒80.
DOI: 10.1007/s10778-020-00997-w
Google Scholar
[24]
S. Koval'chuk, A. Goryk, Exact Solution of the Problem of Elastic Bending of a Multilayer Beam under the Action of a Normal Uniform Load, Mater. Sci. Forum, 968 (2019) 475–485.
DOI: 10.4028/www.scientific.net/msf.968.475
Google Scholar