Exact Analytical Solution of the Problem of Elastic Bending of a Multilayer Beam with a Normal Trapezoidal Load

Article Preview

Abstract:

An exact analytical solution to the problem of plane transverse bending of a section of a narrow multilayer beam under the action of a normal load on the longitudinal faces, distributed according to the law of the trapezoid, is presented. The solution is constructed using the principle of superposition on the basis of the authors’ general solutions to the problems of bending multilayer consoles under the action of loads at the free end, uniformly and linearly distributed load on longitudinal faces. On its basis, separate interchanges for multilayer beams with different methods of fixing the ends were obtained: hinged, rigid and combined. The obtained relations make it possible to determine the stress-strain state of multilayer beams with an arbitrary number of homogeneous (orthotropic, isotropic) and functional-gradient layers, taking into account transverse shear and compression deformations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-119

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V. Shvabyuk, H. Sulym, O. Mikulich, Stress state of plate with incisions under the action of oscillating concentrated forces, Acta Mech. Autom, 9(3) (2015) 140–144.

DOI: 10.1515/ama-2015-0023

Google Scholar

[2] A.V. Goryk, Modeling Transverse Compression of Cylindrical Bodies in Bending, Int. Appl. Mech, 37(9) (2001) 1210‒1221.

Google Scholar

[3] V.I. Shvab'yuk, Ya.M. Pasternak, S.V. Rotko, Refined solution of the timoshenko problem for an orthotropic beam on a rigid base, Mater. Sci., 46(1) (2010) 56–63.

DOI: 10.1007/s11003-010-9263-7

Google Scholar

[4] M. Surianinov, T. Yemelianova, O. Shyliaiev, Investigation of free vibrations of three-layered circular shell, supported by annular ribs of rigidity, Mater. Sci. Forum, 968 (2019) 437–443.

DOI: 10.4028/www.scientific.net/msf.968.437

Google Scholar

[5] W. Zhen, C. Wanji, A global higher-order zig-zag model in terms of the HW variational theorem for multilayered composite beams, Compos. Struct, 158 (2016) 128‒136.

DOI: 10.1016/j.compstruct.2016.09.021

Google Scholar

[6] D. Zhao, Z. Wu, X. Ren, New Sinusoidal Higher-Order Theory Including the Zig-Zag Function for Multilayered Composite Beams. J. Aerosp. Eng., 32(3) (2019).

DOI: 10.1061/(asce)as.1943-5525.0000994

Google Scholar

[7] A. Timpe, Probleme der Spannungsverteilung in ebenen Systemen einfach gelöst mit Hilfe der Airyschen Funktion, Z. Math. Physik, 52 (1905) 348‒383.

Google Scholar

[8] S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, 3rd Edition. McGraw Hill, New York, 1970.

Google Scholar

[9] C.-X. Zhan, Y.-H. Liu, Plane elasticity solutions for beams with fixed ends, J. Zhejiang Univ.: Sci. A, 16(10) (2015) 805‒819.

DOI: 10.1631/jzus.a1500043

Google Scholar

[10] S.G. Lekhnitskii, Anisotropic plate. Gordon and Breach, New York, 1968.

Google Scholar

[11] H.-J. Ding, D.-J. Huang, W.-Q. Chen, Elasticity solutions for plane anisotropic functionally graded beams, Int. J. Solids Struct, 44(1) (2007) 176‒196.

DOI: 10.1016/j.ijsolstr.2006.04.026

Google Scholar

[12] D.-J. Huang, H.-J. Ding, W.-Q. Chen, Analytical solution for functionally graded anisotropic cantilever beam under thermal and uniformly distributed load, J. Zhejiang Univ.: Sci. A, 8(9) (2007) 1351‒1355.

DOI: 10.1631/jzus.2007.a1351

Google Scholar

[13] Z. Zhong, T. Yu, Analytical solution of a cantilever functionally graded beam, Compos. Sci. Technol, 67(3-4) (2007) 481‒488.

DOI: 10.1016/j.compscitech.2006.08.023

Google Scholar

[14] Q. Yang, B.-L. Zheng, K. Zhang, J. Li, Elastic solutions of a functionally graded cantilever beam with different modulus in tension and compression under bending loads, Appl. Math. Model, 38(4) (2014) 1403‒1416.

DOI: 10.1016/j.apm.2013.08.021

Google Scholar

[15] S. Benguediab, A. Tounsi, H. H. Abdelaziz, M. A. A. Meziane, Elasticity solution for a cantilever beam with exponentially varying properties, J. Appl. Mech. Tech. Phy., 58(2) (2017) 354‒361.

DOI: 10.1134/s0021894417020213

Google Scholar

[16] M. Wang, Y. Liu, Analytical solution for bi-material beam with graded intermediate layer, Compos. Struct., 92 (2010) 2358‒2368.

DOI: 10.1016/j.compstruct.2010.03.013

Google Scholar

[17] U. Esendemir, M.R. Usal, M. Usal, The Effects of Shear on the Deflection of Simply Supported Composite Beam Loaded Linearly, J. Reinf. Plast. Compos., 25(8) (2006) 835‒846.

DOI: 10.1177/0731684406065133

Google Scholar

[18] D.-J. Huang, H.-J. Ding, W.-Q. Chen, Analytical solution for functionally graded anisotropic cantilever beam subjected to linearly distributed load, Appl. Math. Mech., 28(7) (2007) 855‒860.

DOI: 10.1007/s10483-007-0702-1

Google Scholar

[19] T.H. Daouadji, A.H. Henni, A. Tounsi, A.B. El Abbes, Elasticity Solution of a Cantilever Functionally Graded Beam, Appl. Compos. Mater, 20(1) (2013) 1–15.

DOI: 10.1007/s10443-011-9243-6

Google Scholar

[20] H.-D. Li, Z.-Y. Mei, X. Zhu, Y.-J. Zhang, Analytical solution of bending of simply supported functionally graded beam subjected to trapeziform pressure, Chuan Bo Li Xue / J. Ship Mech., 19(1-2) (2015) 95‒105.

Google Scholar

[21] A.V. Goryk, S.B. Kovalchuk, Elasticity theory solution of the problem on plane bending of a narrow layered cantilever bar by loads at its end, Mech. Compos. Mater, 54(2) (2018) 179‒190.

DOI: 10.1007/s11029-018-9730-z

Google Scholar

[22] A.V. Goryk, S.B. Koval'chuk, Solution of a Transverse Plane Bending Problem of a Laminated Cantilever Beam Under the Action of a Normal Uniform Load, Strength Mate, 50(3) (2018) 406‒418.

DOI: 10.1007/s11223-018-9984-7

Google Scholar

[23] A.V. Gorik, S.B. Koval'chuk, Solving the Problem of Elastic Bending of a Layered Cantilever Under a Normal Load Linearly Distributed over Longitudinal Faces, Int. Appl. Mech., 56(1) (2020) 65‒80.

DOI: 10.1007/s10778-020-00997-w

Google Scholar

[24] S. Koval'chuk, A. Goryk, Exact Solution of the Problem of Elastic Bending of a Multilayer Beam under the Action of a Normal Uniform Load, Mater. Sci. Forum, 968 (2019) 475–485.

DOI: 10.4028/www.scientific.net/msf.968.475

Google Scholar