Synthesis of Fe3O4 and Fe2O3 Nanocrystal from Iron Sand with Semi-Automatic Coprecipitator

Article Preview

Abstract:

Fe3O4 and Fe2O3 nanocrystals have been successfully synthesized from iron sand by the coprecipitation method using a semi-automatic coprecipitator. The composition of iron sand used was 12, 18, and 24 gram, to investigate the performance of the coprecipitator. The synthesized Fe3O4 and Fe2O3 nanocrystals were characterized using X-Ray Diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive X-Ray (SEM-EDX), and Vibrating Sample Magnetometer (VSM). The best phase composition of Fe3O4 nanocrystals is 100 wt% which has a magnetite crystal size range of 5 to 13 nm, and the mass obtained is in the range of 7.01 to 12.71 gram. The best phase composition of Fe2O3 nanocrystals is 99.89 wt% hematite (α – Fe2O3) which has a crystal size range of 23 to 26 nm, the mass obtained is in the range of 3.51 to 7.49 gram. The highest gain of Fe3O4 and Fe2O3 nanocrystals was 67.62% and 41.58%, respectively, obtained from 18 gram iron sand composition. The morphology of Fe3O4 and Fe2O3 nanocrystals is almost spherical. The highest magnetization was obtained from Fe3O4 nanocrystals with a saturation magnetization of 8.87 emu/gram. The magnetic properties of Fe3O4 and Fe2O3 nanocrystals are ferrimagnetic and weak ferrimagnetic, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-117

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. E. Gunanto, M. P. Izaak, E. Jobiliong, L. Cahyadi, and W. A. Adi, J. Phys. Conf. Ser. 1011 (2018) 012005.

DOI: 10.1088/1742-6596/1011/1/012005

Google Scholar

[2] L. S. Ganapathe, M. A. Mohamed, R. Mohamad Yunus, and D. D. Berhanuddin, Magnetochemistry. 6 (2020) 68.

DOI: 10.3390/magnetochemistry6040068

Google Scholar

[3] T. Saragi, B. Permana, M. Saputri, L. Safriani, I. Rahayu, and R. Risdiana, J. Mater. Dan Energi Indones. 7 (2018) 17.

DOI: 10.24198/jmei.v7i02.15393

Google Scholar

[4] F. Malega, I. P. T. Indrayana, and E. Suharyadi, J. Ilm. Pendidik. Fis. Al-Biruni. 7 (2018) 129–138.

Google Scholar

[5] M. D. Nguyen, H.-V. Tran, S. Xu, and T. R. Lee, Appl. Sci. 11 (2021) 11301.

Google Scholar

[6] I. Nkurikiyimfura, Y. Wang, B. Safari, and E. Nshingabigwi, J. Alloys Compd. 846 (2020) 156344.

Google Scholar

[7] Sunaryono, A. Taufiq, Mashuri, S. Pratapa, M. Zainuri, Triwikantoro, Darminto, Mater. Sci. Forum. 827 (2015) 29–234.

DOI: 10.4028/www.scientific.net/msf.827.229

Google Scholar

[8] Departemen Fisika Fakultas MIPA Universitas Padjadjaran and T. Saragi, J. Ilmu Dan Inov. Fis. 2 (2018) 53–56.

DOI: 10.24198/jiif.v2i1.15438

Google Scholar

[9] A. Basith, A. Taufiq, S. Sunaryono, and D. Darminto, J. Fis. Dan Apl. 8 (2012) 120205.

Google Scholar

[10] M. Mascolo, Y. Pei, and T. Ring, Materials. 6 (2013) 5549–5567.

Google Scholar

[11] L. K. Sholihah and Jurusan Fisika Fakultas MIPA Institut Teknologi Sepuluh Nopember (2010)

DOI: 10.24089/j.sisfo.2014.03.015

Google Scholar

[12] I. Sidharta, N. H. Romadhon, R. F. Syah, R. K. Hafiyanda, Darminto, and A. Shahab, Mater. Sci. Forum. 1028 (2021) 50–55.

DOI: 10.4028/www.scientific.net/msf.1028.50

Google Scholar

[13] Y. W. Myint, T. T. Moe, W. Y. Linn, A. Chang, and P. P. Win, 6 (2017).

Google Scholar

[14] D. Puryanti, J. Ilmu Fis. Univ. Andalas 12 (2020) 11–15.

Google Scholar