Magnetism and Electronics of Pyridinic and Pyrolic Site in Graphene: A Density Functional Theory Study

Article Preview

Abstract:

Graphene, with its hexagonal arrangement of carbon atoms, exhibits high electrical conductivity and charge carrier mobility due to its zero bandgap. However, its semi-metallic nature limits its application in semiconductor devices. This study explores the modification of graphene’s electronic and magnetic properties by introducing defects and nitrogen substitutions in its crystal structure using spin-polarized density functional theory (DFT). Structural relaxation showed variations in supercell expansion with increasing nitrogen doping. The DFT results revealed that nitrogen substitution in a 4 × 4 × 1 graphene supercell opened an energy gap, and converting graphene into a p-type semiconductor. Additionally, nitrogen doping induced a magnetic transition, with pyridinic and combined pyrolic-pyridinic configurations showing notable spin polarization. These findings highlight the potential of nitrogen-doped graphene for magnetic and electronic applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-103

Citation:

Online since:

June 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, p.183–191, Mar. 2007. Number: 3 Publisher: Nature Publishing Group.

Google Scholar

[2] C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrin- sic Strength of Monolayer Graphene," Science, vol. 321, p.385–388, July 2008. Publisher: American Association for the Advancement of Science.

DOI: 10.1126/science.1157996

Google Scholar

[3] T. d. S. A. Cassiano, L. E. de Sousa, L. A. Ribeiro Junior, G. M. e. Silva, and P. H. de Oliveira Neto, "Charge transport in cove-type graphene nanoribbons: The role of quasiparti- cles," Synthetic Metals, vol. 287, p.117056, July 2022.

DOI: 10.1016/j.synthmet.2022.117056

Google Scholar

[4] R. Siburian, S. Paiman, F. Hutagalung, A. M. M. Ali, L. Simatupang, R. Goei, and M. M. Rusop, "Facile method to synthesize of magnesium-graphene nano sheets for candidate of primary bat- tery electrode," Colloid and Interface Science Communications, vol. 48, p.100612, May 2022.

DOI: 10.1016/j.colcom.2022.100612

Google Scholar

[5] H. Fan, Y. Li, D. Wu, H. Ma, K. Mao, D. Fan, B. Du, H. Li, and Q. Wei, "Electrochemical bisphenol A sensor based on N-doped graphene sheets," Analytica Chimica Acta, vol. 711, p.24–28, Jan. 2012.

DOI: 10.1016/j.aca.2011.10.051

Google Scholar

[6] S. Chen, Y. Xu, C. Li, X. Xiao, and Y. Chen, "Modification of N-doped graphene films and their applications in heterojunction solar cells," Solar Energy, vol. 174, p.66–72, Nov. 2018.

DOI: 10.1016/j.solener.2018.08.083

Google Scholar

[7] K. Nassiri Nazif, A. Daus, J. Hong, N. Lee, S. Vaziri, A. Kumar, F. Nitta, M. E. Chen, S. Kananian, R. Islam, K.-H. Kim, J.-H. Park, A. S. Y. Poon, M. L. Brongersma, E. Pop, and K. C. Saraswat, "High-specific-power flexible transition metal dichalcogenide solar cells," Na- ture Communications, vol. 12, p.7034, Dec. 2021. Publisher: Nature Publishing Group.

DOI: 10.1038/s41467-021-27195-7

Google Scholar

[8] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, p.109–162, Jan. 2009. Publisher: American Physical Society.

DOI: 10.1103/revmodphys.81.109

Google Scholar

[9] R. M. Torres-Rojas, D. A. Contreras-Solorio, L. Hernández, and A. Enciso, "Band gap varia- tion in bi, tri and few-layered 2D graphene/hBN heterostructures," Solid State Communications, vol. 341, p.114553, Jan. 2022.

DOI: 10.1016/j.ssc.2021.114553

Google Scholar

[10] E. Bhekti Yutomo, F. Arofiati Noor, and T. Winata, "Effect of the number of nitrogen dopants on the electronic and magnetic properties of graphitic and pyridinic N-doped graphene – a density- functional study," RSC Advances, vol. 11, no. 30, p.18371–18380, 2021. Publisher: Royal Society of Chemistry.

DOI: 10.1039/d1ra01095f

Google Scholar

[11] D. Darminto, R. Asih, B. Priyanto, M. A. Baqiya, I. S. Ardiani, K. Nadiyah, A. Z. Laila, S. Prayogi, S. Tunmee, H. Nakajima, A. D. Fauzi, M. A. Naradipa, C. Diao, and A. Rusydi, "Un- revealing tunable resonant excitons and correlated plasmons and their coupling in new amor- phous carbon-like for highly efficient photovoltaic devices," Scientific Reports, vol. 13, p.7262, May 2023. Number: 1 Publisher: Nature Publishing Group.

DOI: 10.1038/s41598-023-31552-5

Google Scholar

[12] W. Yang, Y. Zhang, J. Wang, M. Xia, J. Zhang, J. He, W. Guo, K. Tian, S. Liu, X. Li, G. Wang, and H. Wang, "Unprecedented 100% conversion from pyridinic to pyrrolic nitrogen configu- ration for electrochemically active nitrogen-doped carbon materials," Journal of Colloid and Interface Science, vol. 662, p.883–892, May 2024.

DOI: 10.1016/j.jcis.2024.02.107

Google Scholar

[13] S. Wu, D. Wang, C. Liu, G. Fang, T.-R. Sun, P. Cui, H. Yan, Y. Wang, and D. Zhou, "Pyridinic- and Pyrrolic Nitrogen in Pyrogenic Carbon Improves Electron Shuttling during Microbial Fe(III) Reduction," ACS Earth and Space Chemistry, vol. 5, p.900–909, Apr. 2021. Publisher: Amer- ican Chemical Society.

DOI: 10.1021/acsearthspacechem.1c00012

Google Scholar

[14] P. Lazar, R. Mach, and M. Otyepka, "Spectroscopic Fingerprints of Graphitic, Pyrrolic, Pyri- dinic, and Chemisorbed Nitrogen in N-Doped Graphene," The Journal of Physical Chemistry C, vol. 123, p.10695–10702, Apr. 2019. Publisher: American Chemical Society.

DOI: 10.1021/acs.jpcc.9b02163

Google Scholar

[15] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. d. Gironcoli, S. Fabris, G. Fratesi,R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials," Journal of Physics: Condensed Matter, vol. 21, p.395502

DOI: 10.1088/0953-8984/21/39/395502

Google Scholar

[16] P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, and S. Baroni, "Quantum ESPRESSO toward the exascale," The Journal of Chemical Physics, vol. 152, p.154105, Apr. 2020.

DOI: 10.1063/5.0005082

Google Scholar

[17] J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized Gradient Approximation Made Sim- ple," Physical Review Letters, vol. 77, p.3865–3868, Oct. 1996. Publisher: American Physical Society.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[18] N. Marzari, D. Vanderbilt, A. De Vita, and M. C. Payne, "Thermal Contraction and Disordering of the Al(110) Surface," Physical Review Letters, vol. 82, p.3296–3299, Apr. 1999. Publisher: American Physical Society.

DOI: 10.1103/physrevlett.82.3296

Google Scholar

[19] P. E. Blöchl, O. Jepsen, and O. K. Andersen, "Improved tetrahedron method for brillouin-zone integrations," Phys. Rev. B, vol. 49, p.16223–16233, Jun 1994.

DOI: 10.1103/physrevb.49.16223

Google Scholar

[20] D. Wu, X. Gao, Z. Zhou, and Z. Chen, "Understanding Aromaticity of Graphene and Graphene Nanoribbons by the Clar Sextet Rule," in Graphene Chem- istry, p.29–49, John Wiley & Sons, Ltd, 2013. Section: 3 _eprint: https://onlinelibrary.wiley.com/doi/pdf/.

DOI: 10.1002/9781118691281.ch3

Google Scholar

[21] A. Avsar, H. Ochoa, F. Guinea, B. Özyilmaz, B. van Wees, and I. Vera-Marun, "Colloquium: Spintronics in graphene and other two-dimensional materials," Reviews of Modern Physics, vol. 92, p.021003, 2020.

DOI: 10.1103/revmodphys.92.021003

Google Scholar