The Effect of Tungsten Powder Particle Size on Printability in Laser Powder Bed Fusion

Article Preview

Abstract:

Due to the high melting temperature and high brittleness, how to mitigate the formation of pores and cracking is still the primary issue in laser manufacturing tungsten components. A novel of strategy of using fine-sized powder was proposed in this study. Two types of pure tungsten powder, with particle size range of 18.3-63.4 μm, 3.5-28.1 μm, respectively, were used to comparatively study the printability in laser powder bed fusion. A highly dense tungsten bulk sample with relative density higher than 99%was successfully manufactured within the latter fine-sized powder. Grid samples were also fabricated with the same processing strategy. The surface and cross-sectional morphology of the as-printed samples were observed to characterize the laser scan tracks, inter-layer and defect structures. Fairly low density of surface cracks was observed on surface. The results show that the fine-sized powder enhances the printability by stabilizing melt pool. This can also be verified by finite element analysis of the temperature distribution and several micron-sized melt pool. The surface cracks have been fully removed in the grid samples. The results provide a processing strategy for further manufacturing of tungsten grid structure and industrial applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-115

Citation:

Online since:

August 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Fu, K. Cui, Y. Zhang, J. Wang, F. Shen, L. Yu, J. Qie, X. zhang, Oxidation protection of tungsten alloys for nuclear fusion applications: A comprehensive review, Journal of Alloys and Compounds 884(5) (2021) 161057.

DOI: 10.1016/j.jallcom.2021.161057

Google Scholar

[2] N. Jamal AbuAlRoos, M.N. Azman, N.A. Baharul Amin, R. Zainon, Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine, Physica Medica 78 (2020) 48-57.

DOI: 10.1016/j.ejmp.2020.08.017

Google Scholar

[3] G. Pintsuk, M. Missirlian, G.N. Luo, Q. Li, W. Wang, D. Guilhem, J. Bucalossi, High heat flux testing of newly developed tungsten components for WEST, Fusion Engineering and Design 173(12) (2021) 112835.

DOI: 10.1016/j.fusengdes.2021.112835

Google Scholar

[4] J. Chen, K. Li, Y. Wang, L. Xing, C. Yu, H. Liu, J. Ma, W. Liu, Z. Shen, The effect of hot isostatic pressing on thermal conductivity of additively manufactured pure tungsten, International Journal of Refractory Metals and Hard Materials 87 (2020) 105135.

DOI: 10.1016/j.ijrmhm.2019.105135

Google Scholar

[5] H. Neuberger, F. Hernandez, S. Ruck, F. Arbeiter, S. Bonk, M. Rieth, L. Stratil, O. Müller, K.-U. Volker, Advances in Additive Manufacturing of fusion materials, Fusion Engineering and Design 167(6) (2021) 112309.

DOI: 10.1016/j.fusengdes.2021.112309

Google Scholar

[6] A. Bose, C.A. Schuh, J.C. Tobia, N. Tuncer, N.M. Mykulowycz, A. Preston, A.C. Barbati, B. Kernan, M.A. Gibson, D. Krause, T. Brzezinski, J. Schroers, R. Fulop, J.S. Myerberg, M. Sowerbutts, Y.-M. Chiang, A. John Hart, E.M. Sachs, E.E. Lomeli, A.C. Lund, Traditional and additive manufacturing of a new Tungsten heavy alloy alternative, International Journal of Refractory Metals and Hard Materials 73(6) (2018) 22-28.

DOI: 10.1016/j.ijrmhm.2018.01.019

Google Scholar

[7] A. Talignani, R. Seede, A. Whitt, S. Zheng, J. Ye, I. Karaman, M.M. Kirka, Y. Katoh, Y.M. Wang, A review on additive manufacturing of refractory tungsten and tungsten alloys, Additive Manufacturing 58(12) (2022) 103009.

DOI: 10.1016/j.addma.2022.103009

Google Scholar

[8] M. Jiang, Y. Yang, C. Han, J. Liu, M. Yan, C. Yang, S. Wei, H. Lu, D. Wang, Defect formation mechanism and suppression strategy in additively manufactured tungsten grid thin-wall structures via laser powder bed fusion, Journal of Manufacturing Processes 120 (2024) 222-33.

DOI: 10.1016/j.jmapro.2024.04.042

Google Scholar

[9] S. Sharma, K.V.M. Krishna, S.S. Joshi, M. Radhakrishnan, S. Palaniappan, S. Dussa, R. Banerjee, N.B. Dahotre, Laser based additive manufacturing of tungsten: Multi-scale thermo-kinetic and thermo-mechanical computational model and experiments, Acta Materialia 259(15) (2023) 119244.

DOI: 10.1016/j.actamat.2023.119244

Google Scholar

[10] A.v. Müller, G. Schlick, R. Neu, C. Anstätt, T. Klimkait, J. Lee, B. Pascher, M. Schmitt, C. Seidel, Additive manufacturing of pure tungsten by means of selective laser beam melting with substrate preheating temperatures up to 1000 ∘C, Nuclear Materials and Energy 19(5) (2019) 184-88.

DOI: 10.1016/j.nme.2019.02.034

Google Scholar

[11] W. Song, D. Wang, C. Tang, P. Sun, J. Yang, Z. Xu, T. Lai, J. Gong, Q. Hu, X. Zeng, Influence of tungsten particle size on microstructure and mechanical properties of high strength and tough tungsten particle-reinforced nickel-based composites by laser-direct energy deposition, Journal of Materials Science & Technology 172 (2024) 213-27.

DOI: 10.1016/j.jmst.2023.06.050

Google Scholar

[12] M. Guo, D. Gu, L. Xi, H. Zhang, J. Zhang, J. Yang, R. Wang, Selective laser melting additive manufacturing of pure tungsten: Role of volumetric energy density on densification, microstructure and mechanical properties, International Journal of Refractory Metals and Hard Materials 84(3) (2019) 105025.

DOI: 10.1016/j.ijrmhm.2019.105025

Google Scholar

[13] A. Iveković, N. Omidvari, B. Vrancken, K. Lietaert, L. Thijs, K. Vanmeensel, J. Vleugels, J.-P. Kruth, Selective laser melting of tungsten and tungsten alloys, International Journal of Refractory Metals and Hard Materials 72(4) (2018) 27-32.

DOI: 10.1016/j.ijrmhm.2017.12.005

Google Scholar

[14] B. Vrancken, R.K. Ganeriwala, M.J. Matthews, Analysis of laser-induced microcracking in tungsten under additive manufacturing conditions: Experiment and simulation, Acta Materialia 194(8) (2020) 464-72.

DOI: 10.1016/j.actamat.2020.04.060

Google Scholar

[15] Z. Hu, Y. Zhao, K. Guan, Z. Wang, Z. Ma, Pure tungsten and oxide dispersion strengthened tungsten manufactured by selective laser melting: Microstructure and cracking mechanism, Additive Manufacturing 36(12) (2020) 101579.

DOI: 10.1016/j.addma.2020.101579

Google Scholar

[16] E. Qin, W. Li, H. Zhou, C. Liu, S. Wu, G. Shi, Simulation and Experimental Investigation on Additive Manufacturing of Highly Dense Pure Tungsten by Laser Powder Bed Fusion, Materials 17(8) (2024) 3966-78.

DOI: 10.3390/ma17163966

Google Scholar

[17] Haibbitt, Karlsson, Sorensen, ABAQUS/CAE User's Manual, Dassault Systemes Simulia Corp, (2020).

Google Scholar

[18] J. Zegzulka, D. Gelnar, L. Jezerska, R. Prokes, J. Rozbroj, Characterization and flowability methods for metal powders, Scientific Reports 10(1) (2020) 21004.

DOI: 10.1038/s41598-020-77974-3

Google Scholar

[19] J. Braun, L. Kaserer, J. Stajkovic, K.H. Leitz, B. Tabernig, P. Singer, P. Leibenguth, C. Gspan, H. Kestler, G. Leichtfried, Molybdenum and tungsten manufactured by selective laser melting: Analysis of defect structure and solidification mechanisms, International Journal of Refractory Metals and Hard Materials 84(10) (2019) 104999.

DOI: 10.1016/j.ijrmhm.2019.104999

Google Scholar

[20] W. Wang, J. Song, B. Yan, Y. Yu, Metal injection molding of tungsten and its alloys, Metal Powder Report 71(6) (2016) 441-44.

DOI: 10.1016/j.mprp.2016.10.066

Google Scholar

[21] K.-H. Lee, G.J. Yun, A novel heat source model for analysis of melt Pool evolution in selective laser melting process, Additive Manufacturing 36 (2020) 101497.

DOI: 10.1016/j.addma.2020.101497

Google Scholar

[22] L. Scime, J. Beuth, Melt pool geometry and morphology variability for the Inconel 718 alloy in a laser powder bed fusion additive manufacturing process, Additive Manufacturing 29 (2019) 100830.

DOI: 10.1016/j.addma.2019.100830

Google Scholar

[23] F.L. Vecchiato, H. de Winton, P.A. Hooper, M.R. Wenman, Melt pool microstructure and morphology from single exposures in laser powder bed fusion of 316L stainless steel, Additive Manufacturing 36 (2020) 101401.

DOI: 10.1016/j.addma.2020.101401

Google Scholar

[24] R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, A.D. Rollett, Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging, Science 363(6429) (2019) 849-52.

DOI: 10.1126/science.aav4687

Google Scholar