A Speek/PES Blend Polymer Matrix for PEMFC Application: Exploring Physico-Chemical and Structural Properties through a Theoretical Approach

Article Preview

Abstract:

In proton exchange membrane fuel cells, the substitution of hydrated Nafion® for lower cost materials is compulsory. In this work, a material based on a two commercial polyarylenes blend, with chemical modification, has been developed. The dynamic properties of the material were evaluated, and correlated to microscopic morphology and physico-chemical properties. The material showed thermal resistance above 200 °C, and featured conductivities in the order of 10-2 S cm-1, measured at up to 90 °C. In order to obtain better microscopic phase separation, between the conducting polymer (sPEEK) and the structural polymer (PES), certain solvent mixtures were evaluated, based on polarity character. The NMP/DMSO (0,3/0,7 %(v/v)) solvent mixture formed the film with the best properties, under hydrated conditions. Microscopic phase separation was approached by theoretical calculation of solubility parameters as compared to experimental data. This is an unusual and promising approach, as well as modification of materials structure through solvent manipulation, which is a more practical and unexpensive procedure than synthesis of new polymer structures.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

63-75

Citation:

Online since:

August 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.T. Balsara Jr., Polymer electrolytes, Annual Review of Materials Research 43 (2015) 503-525.

Google Scholar

[2] F. Xu, Y. Chen, J. Li, Y. Han, B. Lin, J. Ding, Robust poly(alkyl–fluorene isatin) proton exchange membranes grafted with pendant sulfonate groups for proton exchange membrane fuel cells, Journal of Membrane Science 664 (2022) 121045.

DOI: 10.1016/j.memsci.2022.121045

Google Scholar

[3] J. Li, C. Yang, H. Lin, J. Huang, S. Wang, G. Sun, High-performance and robust high-temperature polymer electrolyte membranes with moderate microphase separation by implementation of terphenyl-based polymers, Journal of Energy Chemistry 92 (2024) 572-578.

DOI: 10.1016/j.jechem.2024.01.034

Google Scholar

[4] K. Funke, Solid state ionics: from Michael Faraday to green energy – the European dimension, Science and Technology of Advanced Materials 14 (2013) 043502 – 043507.

DOI: 10.1088/1468-6996/14/4/043502

Google Scholar

[5] D. Wang, P. Zheng, Z. Yu, X. Wang, T. Li, P(AMPS-co-PEGMA)-doped and PVDF-HFP-enhanced stretchable polymer electrolytes: application as flexible electrochromic devices, Polymer International 72 (2023) 704-710.

DOI: 10.1002/pi.6527

Google Scholar

[6] I.V. Volkov, A.A. Marinin, NMR methods for studying ion and molecular transport in polymer electrolytes, Russian Chemical Reviews 82 (2013) 248-272

DOI: 10.1070/rc2013v082n03abeh004278

Google Scholar

[7] X. Xu, J. Chen, L. Wang, J. Zhao, S. Wu, Y. Yin, H. Li, An experimental and theoretical correlation to account for the effect of graphene quantum dots on the ionic conductivity of poly(ethylene oxide) polymer electrolytes, Journal of Solid State Electrochemistry 27 (2023) 2177–2184.

DOI: 10.1007/s10008-023-05497-8

Google Scholar

[8] L. Assuma, C. Iojoiu, G. Albayrak Ari, L. Cointeaux, J. Sanchez, Polyethersulfone containing sulfonimide groups as proton exchange membrane fuel cells, International Journal of Hydrogen Energy 39 (2014) 2740-2750.

DOI: 10.1016/j.ijhydene.2013.07.090

Google Scholar

[9] F. Xu, Y. Chen, J. Li, Y. Han, B. Lin, J. Ding, Robust poly(alkyl–fluorene isatin) proton exchange membranes grafted with pendant sulfonate groups for proton exchange membrane fuel cells, Journal of Membrane Science 664 (2022) 121045.

DOI: 10.1016/j.memsci.2022.121045

Google Scholar

[10] J.A.F.L. Batalha, K. Dahmouche, R.B. Sampaio, A.S. Gomes, Structure and Properties of New sPEEK/Zirconia/Protic Ionic Liquid Membranes for Fuel Cell Application, Macromolecular Materials and Engineering 302 (2017) 1600301-1600312.

DOI: 10.1002/mame.201600301

Google Scholar

[11] A.S. Gomes, J.C. Dutra Filho, Hybrid membranes of PVA for direct ethanol fuel cells (DEFCs) applications, International Journal of Hydrogen Energy 37 (2012) 6246-6252.

DOI: 10.1016/j.ijhydene.2011.08.002

Google Scholar

[12] J.A.F.L. Batalha, R.B. Sampaio, J.C. Dutra Filho, E.J.R. Rodrigues, R.P. Cucineli Neto, A.S. Gomes, Synthesis and Characterization of Novel Ion-conducting Membranes Based on Poly(Ether Sulfone) and Protic Ionic Liquid, Macromolecular Symposia 378 (2018) 1700045-1700053.

DOI: 10.1002/masy.201700045

Google Scholar

[13] A.M. Díez-Pascual, M. Naffakh, M.A. Gómez, C. Marco, G. Ellis, M.T. Martínez, A. Ansón, J.M. González-Domínguez, Y. Martínez-Rubi, B. Simard Development and characterization of PEEK/carbon nanotube composites, Carbon 47 (2009) 3079-3090.

DOI: 10.1016/j.carbon.2009.07.020

Google Scholar

[14] A. Abdolmaleki, M. Zhiani, M. Maleki, S. Borandeh, Preparation and evaluation of sulfonated polyoxadiazole membrane containing phenol moiety for PEMFC application, Polymer 75 (2015) 17-24.

DOI: 10.1016/j.polymer.2015.08.021

Google Scholar

[15] P. Weerachanchai, Z. Chen, S.S.J. Leong, M.W. Chang, J. Lee, Hildebrand solubility parameters of ionic liquids: Effects of ionic liquid type, temperature and DMA fraction in ionic liquid, Chemical Engineering Journal 213 (2012) 356-362.

DOI: 10.1016/j.cej.2012.10.012

Google Scholar

[16] P. Weerachanchai, S. Kwak, J. Lee, Effects of solubility properties of solvents and biomass on biomass pretreatment, Bioresource Technology 170 (2014) 160-166.

DOI: 10.1016/j.biortech.2014.07.057

Google Scholar

[17] M.M. Alavianmehr, S.M. Hosseini, F. Akbari, J. Moghadasi, Predicting solubility parameter of molecular fluids, Journal of Molecular Liquids 211 (2015) 560-566.

DOI: 10.1016/j.molliq.2015.07.068

Google Scholar

[18] R.A. Miranda-Quintana, L. Chen, J. Smiatek, Insights into Hildebrand Solubility Parameters –Contributions from Cohesive Energies or Electrophilicity Densities?, ChemPhysChem 25 (2024) 1-11.

DOI: 10.1002/cphc.202300566

Google Scholar

[19] C.M. Hansen, Hansen Solubility Parameters: a User's Handbook, second ed., CRC Press, Taylor & Francis Group, Boca Raton, 2007.

Google Scholar

[20] M.M. Batista, R. Guirardello, M.A. Krähenbühl, Determination of the Hansen solubility parameters of vegetable oils, biodiesel, diesel, and biodiesel–diesel blends, Journal of the American Oil Chemistry Society 92 (2015) 95-109.

DOI: 10.1007/s11746-014-2575-2

Google Scholar

[21] X. Su, B. Shi, L. Wang, Investigation on three-dimensional solubility parameters for explanation and prediction of swelling degree of polydimethylsiloxane pervaporation membranes, Journal of Macromolecular Science Part B: Physics 54 (2015) 1248-1258.

DOI: 10.1080/00222348.2015.1085272

Google Scholar

[22] D. Liu, W. Tang, Y. Wang, S. Zhang, J. Wang, J. Li, J. Wang, M. Zhi, P. Wang, Z. Li, Solubility and Hansen Solubility Parameters of N-Benzyloxycarbonyl-l-serine in 12 Monosolvents from 283.15 to 323.15 K, Journal of Chemical & Engineering Data 68 (2023).

DOI: 10.1021/acs.jced.3c00201

Google Scholar

[23] D.W. Van Krevelen, Properties of Polymers, fourth ed., Elsevier, Amsterdan, 2001.

Google Scholar

[24] S. Mohsenpour, A. Kamgar, F. Ezmaeilzadeh, Investigation of the effect of TiO2 nanoparticles on proton exchange membrane of sPEEK used as a fuel cell electrolyte based on phase diagram, Journal of Inorganic and Organometallic Polymers and Materials, 28 (2018) 63-72.

DOI: 10.1007/s10904-017-0723-5

Google Scholar

[25] M. Jun, Y. Choi, J. Kim, Solvent casting effects of sulfonated poly(ether ether ketone) for polymer electrolyte membrane fuel cell, Journal of Membrane Science 396 (2012) 32-37.

DOI: 10.1016/j.memsci.2011.12.008

Google Scholar

[26] Y. Yagizatli, A. Sahin, I. Ar, Effect of thermal crosslinking process on membrane structure and PEM fuel cell applications performed with SPEEK-PVA blend membranes, International Journal of Hydrogen Energy 47 (2022) 40445-40461.

DOI: 10.1016/j.ijhydene.2022.04.183

Google Scholar

[27] X. Yan, W. Zheng, X. Ruan, Y. Pan, X. Wu, G. He, The control and optimization of macro/micro-structure of ion conductive membranes for energy conversion and storage, Chinese Journal of Chemical Engineering 24 (2016) 558-571.

DOI: 10.1016/j.cjche.2016.03.003

Google Scholar

[28] Q. Li, L. Wu, Y. Pang, B. Liu, X. Zhu, C. Zhao, Novel Fluorinated Anion Exchange Membranes Based on Poly(Pentafluorophenyl-Carbazole) with High Ionic Conductivity and Alkaline Stability for Fuel Cell Applications, Macromolecular Rapid Communications 45 (2024) 2300734- 2300743.

DOI: 10.1002/marc.202300734

Google Scholar

[29] G. Dorenbos, How hydrophobic side chain design affects water cluster connectivity in model polymer electrolyte membranes: Linear versus Y-shaped side chains, International Journal of Hydrogen Energy 45 (2020) 33906-33924.

DOI: 10.1016/j.ijhydene.2020.09.010

Google Scholar

[30] S.S. Sekhon, J. Park, E. Cho, Y. Yoon, C. Kim, W. Lee, Morphology studies of high temperature proton conducting membranes containing hydrophilic/hydrophobic ionic liquids, Macromolecules 42 (2009) 2054-2062.

DOI: 10.1021/ma8027112

Google Scholar

[31] Y. Yin, Q. Du, Y. Qin, Y. Zhou, K. Okamoto, Sulfonated polyimides with flexible aliphatic side chains for polymer electrolyte cells, Journal of Membrane Science 367 (2011) 211-219.

DOI: 10.1016/j.memsci.2010.10.054

Google Scholar

[32] H. Meng, J. Song, P. Guan, H. Wang, W. Zhao, Y. Zou, H. Ding, X. Wu, P. He, F. Liu, Y. Zhang, High ion exchange capacity perfluorosulfonic acid resine proton exchange membrane for high temperature applications in polymer electrolyte fuel cells, Journal of Power Sources 602 (2024) 234205.

DOI: 10.1016/j.jpowsour.2024.234205

Google Scholar

[33] E. Fontananova, V. Cucunato, E. Curcio, F. Trotta, M. Biasizzo, E. Drioli, G. Barbieri, Influence of the preparation conditions on the properties of polymeric and hybrid cation exchange membranes, Electrochimica Acta 66 (2012) 164-172.

DOI: 10.1016/j.electacta.2012.01.074

Google Scholar

[34] K. Charradi, Z. Ahmed, N. Thmaini, P. Aranda, Y.O. Al-Ghamdi, P. Ocon, S.H.M.A.S. Keshk, R. Chtourou, Incorporating of layered double hydroxide/sepiolite to improve the performance of sulfonated poly(ether ether ketone) composite membranes for proton Exchange membrane fuel cells, Journal of Applied Polymer Science, 138 (2021) 50364-50373.

DOI: 10.1002/app.50364

Google Scholar

[35] S. Porchelvi, R. Kannan, P.B. Palani, K.S. Abidin, S. Rajashabala, High conductive proton exchange membrane (SPEEK/MMT) and its characterization, Materials Research Innovation 23 (2019) 33-38.

DOI: 10.1080/14328917.2017.1361667

Google Scholar