[1]
Tsai MH, Fan-Jiang JC, Liou GY, et al. Development of an Online Quality Control System for Injection Molding Process. Polymers (Basel). 2022, 15;14(8):1607.
DOI: 10.3390/polym14081607
Google Scholar
[2]
Aminabadi SS, Tabatabai P, Steiner A, et al. Industry 4.0 In-Line AI Quality Control of Plastic Injection Molded Parts. Polymers (Basel). 2022, 14(17):3551.
DOI: 10.3390/polym14173551
Google Scholar
[3]
Ghadoui M, Mouchtachi A, Majdoul R. A hybrid optimization approach for intelligent manufacturing in plastic injection molding by using artificial neural network and genetic algorithm. Sci Rep. 2023, 13(1):21817.
DOI: 10.1038/s41598-023-48679-0
Google Scholar
[4]
Chang H, Lu S, Sun Y, Wang R. Liquid Silicone Rubber Headlamp Lens Injection Molding Process Optimization Based on Tie Bar Elongation and NSGA III. Polymers (Basel). 2023, 31; 15 (21): 4278.
DOI: 10.3390/polym15214278
Google Scholar
[5]
Qian YP, Wang Y, Huang JH. et al. Study on the optimization of conformal cooling channels for plastic injection mold. Adv. Mater. Res. 2017, 591-593:502-506.
DOI: 10.4028/www.scientific.net/amr.591-593.502
Google Scholar
[6]
Mazur M, Brincat P, Leary M. et al. Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting. Int. J. Adv. Manuf. Technol. 2017, 93: 881-900.
DOI: 10.1007/s00170-017-0426-7
Google Scholar
[7]
Tsai KM, Luo HJ. Comparison of injection molding process windows for plastic lens established by artificial neural network and response surface methodology. Int. J. Adv. Manuf. Technol. 2015, 77: 1599-1611.
DOI: 10.1007/s00170-014-6366-6
Google Scholar
[8]
Yan, Z., Qian, Y., Huang, W. et al. Research on heat transfer enhancement of variable cross sectional conformal cooling of injection mold based on fluent. J. Mech. Eng. Res. 2018, 10, 7-20.
DOI: 10.5897/jmer2018.0488
Google Scholar
[9]
Park HS, Dang XP. Development of a smart plastic injection mold with conformal cooling channels. Procedia Manuf. 2017, 10:48-59.
DOI: 10.1016/j.promfg.2017.07.020
Google Scholar
[10]
Zheng, Z., Zhang, Ho., Wang, Gl. et al. Finite Element Analysis on the Injection Molding and Productivity of Conformal Cooling Channel. J. Shanghai Jiaotong Univ. 2021, 16, 231–235.
DOI: 10.1007/s12204-011-1128-1
Google Scholar
[11]
Silva, H.M., Noversa, J.T., Fernandes, L. et al. Design, simulation and optimization of conformal cooling channels in injection molds: a review. Int. J. Adv. Manuf. Technol. 2022, 120, 4291-4305.
DOI: 10.1007/s00170-022-08693-4
Google Scholar
[12]
Wang, J., Xuan, J. & Ni, Y. Automatic design of conformal cooling channels of injection mold based on lotus root model. Int. J. Adv. Manuf. Technol. 2023,125, 1879-1892.
DOI: 10.1007/s00170-022-10714-1
Google Scholar
[13]
Arman, S., Lazoglu, I. A comprehensive review of injection mold cooling by using conformal cooling channels and thermally enhanced molds. Int. J. Adv. Manuf. Technol. 2023, 127, 2035-2106.
DOI: 10.1007/s00170-023-11593-w
Google Scholar
[14]
Feng, S.C., Kamat, A.M., Pei, Y.T. Design and fabrication of conformal cooling channels in molds: review and progress updates. Int. J. Heat Mass Transf. 2021, 171, 121082.
DOI: 10.1016/j.ijheatmasstransfer.2021.121082
Google Scholar
[15]
Rocha, S.B, Zhilsova, T, Neto, V. et, al. Optimization to assist design and analysis of temperature control strategies for injection molding-a review [J]. Materials. 2022, 15(12), 4048.
DOI: 10.3390/ma15124048
Google Scholar
[16]
Wang, Y, Lee, C. Design and Optimization of Conformal Cooling Channels for Increasing Cooling Efficiency in Injection Molding [J]. Appl. Sci. 2023, 13, 7437.
DOI: 10.3390/app13137437
Google Scholar
[17]
Kuo, C.C, Qiu, S.X, Lee, G.Y. et al. Characterizations of polymer injection molding tools with conformal cooling channels fabricated by direct and indirect rapid tooling technologies [J]. Int. J. Adv. Manuf. Technol. 2021, 117, 343-360.
DOI: 10.1007/s00170-021-07778-w
Google Scholar
[18]
Kuo, CC., Xu, YX. A simple method of improving warpage and cooling time of injection molded parts simultaneously. Int J Adv Manuf Technol 2022, 122, 619–637.
DOI: 10.1007/s00170-022-09925-3
Google Scholar
[19]
Li J, Ong YC, Wan Muhamad WM. Optimization Design of Injection Mold Conformal Cooling Channel for Improving Cooling Rate. Processes. 2024; 12(6):1232.
DOI: 10.3390/pr12061232
Google Scholar
[20]
Simiyu, L.W., Mutua, J.M., Muiruri, P.I. et al. Optimization of polygonal cross-sectioned conformal cooling channels in injection molding. Int J Interact Des Manuf 2024, 18, 1593–1609.
DOI: 10.1007/s12008-023-01226-7
Google Scholar
[21]
Kuo C-C, Nguyen T-D, Zhu Y-J, Lin S-X. Rapid Development of an Injection Mold with High Cooling Performance Using Molding Simulation and Rapid Tooling Technology. Micromachines. 2021; 12(3):311.
DOI: 10.3390/mi12030311
Google Scholar
[22]
Alvarado-Iniesta, A., Cuate, O. & Schütze, O. Multi-objective and many objective design of plastic injection molding process. Int. J. Adv. Manuf. Technol. 2019, 102, 3165-3180.
DOI: 10.1007/s00170-019-03432-8
Google Scholar
[23]
Gao, H., Zhang, Y., Fu, Y. et al. Process parameters optimization using a novel classification model for plastic injection molding. Int. J. Adv. Manuf. Technol. 2018, 94, 357-370.
DOI: 10.1007/s00170-017-0812-1
Google Scholar
[24]
Ozcelik B., Erzurumlu, T. Comparison of the warpage optimization in the plastic injection molding using ANOVA, neural network model and genetic algorithm. Journal of Materials Processing Tech, 2006, 171(3): 437-445.
DOI: 10.1016/j.jmatprotec.2005.04.120
Google Scholar
[25]
Kitayama, S., Yokoyama, M., Takano, M. et al. Multi-objective optimization of variable packing pressure profile and process parameters in plastic injection molding for minimizing warpage and cycle time. Int J Adv Manuf Technol, 2017, 92, 3991-3999.
DOI: 10.1007/s00170-017-0456-1
Google Scholar
[26]
Fu, S. J. Optimization of process parameters for injection molding based on taguchi technique. Advanced Materials Research, 2018, 538(541):1170-1174.
DOI: 10.4028/www.scientific.net/amr.538-541.1170
Google Scholar
[27]
Ozcelik, B. Optimization of injection parameters for mechanical properties of specimens with weld line of polypropylene using Taguchi method. International Communications in Heat & Mass Transfer, 2011, 38(8): 1067-1072.
DOI: 10.1016/j.icheatmasstransfer.2011.04.025
Google Scholar
[28]
Feng, Q., Liu, L. & Zhou, X. Automated multi-objective optimization for thin-walled plastic products using Taguchi, ANOVA, and hybrid ANN-MOGA. Int J Adv Manuf Technol, 2020, 106, 559-575.
DOI: 10.1007/s00170-019-04488-2
Google Scholar
[29]
Yang Ming, Hou Jianchao, Liu Jubao, et al. Optimization of the Warping Deformation of Mid-frame Plastic Components Based on BP-SSA Neural Network Mode [J] China Plastic Industry, 2024, 52 (7): 97-104.
Google Scholar
[30]
Liu Jubao, Huang Jianjun, Yang Ming, et al. Analysis and Optimization of Bent Deformation of Automotive Center Console Frame Based on Moldflow [J] China Plastic Industry, 2024, 52 (3): 83-88.
Google Scholar
[31]
Fang Mingyue, Zhang Yu, Wang Che, et al. Optimization of Injection Process Parameters for Automotive Instrument Framework Based on Particle Swarm Optimization Algorithm [J] China Plastic Industry, 2024, 52 (2): 75-89+90.
Google Scholar
[32]
Wang Xingxing, Shi Yunyang, Zhang Jie. Optimization of Injection Process Parameters and Mold Design for Card-cover Based on the Response Surface Methodology [J] China Plastic Industry, 2024, 52 (1): 67-75.
Google Scholar
[33]
Zhai, H., Li, X., Xiong, X. et al. A method combining optimization algorithm and inverse-deformation design for improving the injection quality of box-shaped parts. Int J Adv Manuf Technol, 2024, 130, 1901-1924.
DOI: 10.1007/s00170-023-12602-8
Google Scholar
[34]
Wangqing Wu, Xiansong He, Binbin Li. et al. An Effective Shrinkage Control Method for Tooth Profile Accuracy Improvement of Micro-Injection-Molded Small-Module Plastic Gears. Polymers, 2022, 14(15), 3114.
DOI: 10.3390/polym14153114
Google Scholar
[35]
Kitayama, S., Tsurita, S., Takano, M. et al. Multi-objective process parameters optimization in rapid heat cycle molding incorporating variable packing pressure profile for improving weldline, clamping force, and cycle time. Int J Adv Manuf Technol, 2022, 120, 3669-3681.
DOI: 10.1007/s00170-022-08994-8
Google Scholar