[1]
M. H. I. Ibrahim, N. Muhamad, and A. B. Sulong, "Rheological characterization of water atomised stainless steel SS316L for micro MIM," in Advanced Materials Research, 2011, p.129–134.
DOI: 10.4028/www.scientific.net/AMR.264-265.129
Google Scholar
[2]
F. Arès, D. Delbergue, and V. Demers, "Injection Flow Rate Threshold Preventing Atypical In-Cavity Pressure during Low-Pressure Powder Injection Molding," Powders, vol. 2, no. 4, p.709–726, Nov. 2023.
DOI: 10.3390/powders2040044
Google Scholar
[3]
J. Merhar, "Overview of metal injection moulding," Metal Powder Report, vol. 45, no. 5, p.339–342, 1990.
DOI: 10.1016/S0026-0657(10)80242-5
Google Scholar
[4]
J. Gonzlez-Gutirrez, G. Beulke, and I. Emri, "Powder Injection Molding of Metal and Ceramic Parts," in Some Critical Issues for Injection Molding, InTech, 2012.
DOI: 10.5772/38070
Google Scholar
[5]
Groover, M. P. Fundamentals of modern manufacturing: materials, process, and system fifth edition (G. L. Tonkay (ed.)), 2013.
Google Scholar
[6]
Callister, W. D., & Rethwisch, D. G. Fundamentals of materials science and engineering: an integrated approach. Wiley, 2015.
Google Scholar
[7]
Marianna. Kontopoulou, Applied polymer rheology : polymeric fluids with industrial applications. Wiley, 2012.
Google Scholar
[8]
Folaron, "( 12 ) United States Patent," 2020.
Google Scholar
[9]
E.E. Gdoutos, "Solid Mechanics and Its Applications." [Online]. Available: http://www.springer.com/series/6557
Google Scholar
[10]
A. G. Hasib et al., "Rheology scaling of spherical metal powders dispersed in thermoplastics and its correlation to the extrudability of filaments for 3D printing," Addit Manuf, vol. 41, May 2021.
DOI: 10.1016/j.addma.2021.101967
Google Scholar
[11]
Y. Li, L. Li, and K. A. Khalil, "Effect of powder loading on metal injection molding stainless steels," J Mater Process Technol, vol. 183, no. 2–3, p.432–439, Mar. 2007.
DOI: 10.1016/j.jmatprotec.2006.10.039
Google Scholar
[12]
B. Grümer and C. Hopmann, "The influence of recycling on the viscosity of polyamide 6 and a general modeling approach," Progress in Rubber, Plastics and Recycling Technology, vol. 34, no. 3, p.158–167, Aug. 2018.
DOI: 10.1177/1477760618798427
Google Scholar
[13]
G. Li, H. Xia, Y. Lei, W. Bin Yang, T. Liu, and J. P. He, "Highly conductive polymer composites with excellent toughness, fluidity and temperature-independent conductivity," J Appl Polym Sci, vol. 137, no. 24, Jun. 2020.
DOI: 10.1002/app.48820
Google Scholar
[14]
A. M. Abdullah, T. N. A. T. Rahim, W. N. F. W. Hamad, D. Mohamad, H. M. Akil, and Z. A. Rajion, "Mechanical and cytotoxicity properties of hybrid ceramics filled polyamide 12 filament feedstock for craniofacial bone reconstruction via fused deposition modelling," Dental Materials, vol. 34, no. 11, pp. e309–e316, Nov. 2018.
DOI: 10.1016/j.dental.2018.09.006
Google Scholar
[15]
Y. S. Kim, J. K. Kim, and E. S. Jeon, "Effect of the compounding conditions of polyamide 6, carbon fiber, and Al2O3 on the mechanical and thermal properties of the composite polymer," Materials, vol. 12, no. 18, Sep. 2019.
DOI: 10.3390/ma12183047
Google Scholar
[16]
Y. S. Kim, J. K. Kim, and E. S. Jeon, "Effect of the compounding conditions of polyamide 6, carbon fiber, and Al2O3 on the mechanical and thermal properties of the composite polymer," Materials, vol. 12, no. 18, Sep. 2019.
DOI: 10.3390/ma12183047
Google Scholar
[17]
T. M. Majka, M. Cokot, and K. Pielichowski, "Studies on the thermal properties and flammability of polyamide 6 nanocomposites surface-modified via layer-by-layer deposition of chitosan and montmorillonite," J Therm Anal Calorim, vol. 131, no. 1, p.405–416, Jan. 2018.
DOI: 10.1007/s10973-017-6849-4
Google Scholar