Synthesis, Structure and Adsorption Properties of Carbon Composites Based on Lignin and Iron Powder

Article Preview

Abstract:

This study presents the synthesis of carbon composites based on iron powder and hydrolysis lignin, both with and without the addition of oleic acid. The synthesized composites were characterized using X-ray diffraction, gas adsorption-desorption porosimetry, and magnetometry. In addition, the adsorption performance of the composites toward methylene blue and congo red dyes from aqueous solutions was investigated. It was found that the addition of oleic acid does not significantly alter the structural or magnetic properties of the synthesized composite. However, it does affect the composition of oxygen-containing surface groups on the carbon. Analysis of the adsorption isotherms revealed that the carbon composite synthesized with oleic acid is nearly equally effective in adsorbing both methylene blue and congo red dyes. Isotherm modeling demonstrated that the synthesized composites adsorb both dyes via a physisorption mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-114

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Rajbir, Synthetic Dyes, Mittal Publications, New Delhi, India. 2002.

Google Scholar

[2] M.A. Hassaan, A. El Nemr, Health and Environmental Impacts of Dyes: Mini Review, American Journal of Environmental Science and Engineering. 1 (2017) 64–67.

Google Scholar

[3] K. Vikrant, B.S. Giri, N. Raza, K. Roy, K.H. Kim, B.N. Rai, R.S. Singh, Recent advancements in bioremediation of dye: Current status and challenges, Bioresour. Technol. 253 (2018) 355–367.

DOI: 10.1016/j.biortech.2018.01.029

Google Scholar

[4] S. Benkhaya, S. M'rabet, H. Lgaz, A. El Bachiri, A. El Harfi, Dyes: Classification, Pollution, and Environmental Effects, in: S.S. Muthu, A. Khadir (Eds), Dye Biodegradation, Mechanisms and Techniques. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry, Springer, Singapore, 2020, pp.1-50.

DOI: 10.1007/978-981-16-5932-4_1

Google Scholar

[5] Q.H. Yang, C.Q. Zhao, Removal of Chemical Oxygen Demand in Tannery Effluent by Flocculant, Adv. Mater. Res. 602–604 (2012) 1265–1268.

DOI: 10.4028/www.scientific.net/amr.602-604.1265

Google Scholar

[6] Y. Sun, D. Li, X. Lu, J. Sheng, X. Zheng, X. Xiao, Flocculation of combined contaminants of dye and heavy metal by nano-chitosan flocculants, J. Environ. Manag. 299 (2021) 113589.

DOI: 10.1016/j.jenvman.2021.113589

Google Scholar

[7] D. Cao, Y. Wang, X. Zhao, Combination of photocatalytic and electrochemical degradation of organic pollutants from water, Curr. Opin. Green Sustain. Chem. 6 (2017) 78–84.

Google Scholar

[8] D.K. Sarfo, A. Kaur, D.L. Marshall, A.P. O'Mullane, Electrochemical degradation and mineralisation of organic dyes in aqueous nitrate solutions, Chemosphere. 316 (2023) 137821.

DOI: 10.1016/j.chemosphere.2023.137821

Google Scholar

[9] V. Dyachok, L. Venher, Application of liquid extraction for wastewater treatment, Journal Environmental Problems, 9 (2024) 213–217.

DOI: 10.23939/ep2024.04.213

Google Scholar

[10] I. Bordun, T. Vasylinych, M. Malovanyy, H. Sakalova, L. Liubchak, L. Luczyt, Study of adsorption of differently charged dyes by carbon adsorbents, Desalin. Water Treat. 288 (2023) 151–158.

DOI: 10.5004/dwt.2023.29332

Google Scholar

[11] M.A. Hassaan, A. El Nemr, Advanced Oxidation Processes for Textile Wastewater Treatment, International Journal of Photochemistry and Photobiology. 2 (2017) 85–93.

Google Scholar

[12] P.O. Oladoye, T.O. Ajiboye, W.C. Wanyonyi, E.O. Omotola, M.E. Oladipo, Ozonation, electrochemical, and biological methods for the remediation of malachite green dye wastewaters: A mini review, Sustainable Chemistry for the Environment. 3 (2023) 100033.

DOI: 10.1016/j.scenv.2023.100033

Google Scholar

[13] O. Popovych, M. Havryshko, G. Yaremko, Y. Makovskiy, Study of the anaerobic process of industrial water purification in combination with sorption methods, Journal Environmental Problems. 8 (2023) 117–125.

DOI: 10.23939/ep2023.02.117

Google Scholar

[14] M.M. Sabzehmeidani, S. Mahnaee, M. Ghaedi, H. Heidari, V.A.L. Roy, Carbon based materials: a review of adsorbents for inorganic and organic compounds. Mater. Adv. 2 (2021) 598–627.

DOI: 10.1039/d0ma00087f

Google Scholar

[15] S. Mishra, L. Cheng, A. Maiti, The utilization of agro-biomass/byproducts for effective bio-removal of dyes from dyeing wastewater: A comprehensive review. J. Environ. Chem. Eng. 9 (2021) 104901.

DOI: 10.1016/j.jece.2020.104901

Google Scholar

[16] D.C.C.D.S. Medeiros, P. Chelme-Ayala, C. Benally, B.S. Al-Anzi, M. Gamal El-Din, Review on carbon-based adsorbents from organic feedstocks for removal of organic contaminants from oil and gas industry process water: Production, adsorption performance and research gaps. J. Environ. Manag. 320 (2022) 115739.

DOI: 10.1016/j.jenvman.2022.115739

Google Scholar

[17] R.I. Kosheleva, A.C. Mitropoulos, G.Z. Kyzas, Synthesis of activated carbon from food waste, Environ. Chem. Lett. 17 (2019) 429–438.

DOI: 10.1007/s10311-018-0817-5

Google Scholar

[18] N.R.B. Razzak, H.I. Syeda, N.A. Milne, E.M. Moon, Turning municipal food organic waste into activated carbon: A step towards circular economy, Therm. Sci. Eng. Prog. 56 (2024) 103073.

DOI: 10.1016/j.tsep.2024.103073

Google Scholar

[19] E. Rajendaran, M.A.A. Zaini, A. Arsad, N.S. Nasri, Carbon-Based Adsorbents from Used Rubber Slipper for Dye Removal, Mater. Sci. Forum. 951 (2019) 83–88.

DOI: 10.4028/www.scientific.net/msf.951.83

Google Scholar

[20] Q. Zhao, T. Xu, X. Song, S. Nie, S.-E. Choi, C. Si, Preparation and Application in Water Treatment of Magnetic Biochar, Front. Bioeng. Biotechnol. 9 (2021) 769667.

DOI: 10.3389/fbioe.2021.769667

Google Scholar

[21] N. Nahurskyi, M. Malovanyy, I. Bordun, E. Szymczykiewicz, Magnetically Sensitive Carbon-Based Nanocomposites for the Removal of Dyes and Heavy Metals from Wastewater: A Review, Chem. Chem. Technol. 18 (2024) 170–187.

DOI: 10.23939/chcht18.02.170

Google Scholar

[22] P. Staroń, J. Chwastowski, Yeast-Based Magnetic Biocomposite for Efficient Sorption of Organic Pollutants, Appl. Sci. 14 (2024) 655.

DOI: 10.3390/app14020655

Google Scholar

[23] Y.S. Hao, N. Othman, M.A.A. Zaini, Methylene blue and Congo red removal by activated carbons: A current literature, Acta Univ. Sapientiae, Agric. Environ. 14 (2022) 29-44.

DOI: 10.2478/ausae-2022-0003

Google Scholar

[24] L. Zhang, L. Yang, J. Chen, W. Yin, Y. Zhang, X. Zhou, F. Gao, J. Zhao, Adsorption of Congo Red and Methylene Blue onto Nanopore-Structured Ashitaba Waste and Walnut Shell-Based Activated Carbons: Statistical Thermodynamic Investigations, Pore Size and Site Energy Distribution Studies, Nanomaterials. 12 (2022) 3831.

DOI: 10.3390/nano12213831

Google Scholar

[25] G. Mugaishudeen, M. Harish, R. Gopal, Removal of Methylene blue and Congo red from the wastewater in a jet loop reactor using ozone and activated carbon, Desalin. Water Treat. 319 (2024) 100471.

DOI: 10.1016/j.dwt.2024.100471

Google Scholar

[26] N. Wu, L. Fu, M. Su, M. Aslam, K.C. Wong, V.P. Dravid, Interaction of fatty acid monolayers with cobalt nanoparticles, Nano. Lett. 4 (2004) 383–386.

DOI: 10.1021/nl035139x

Google Scholar

[27] P. Gorbyk, N. Kusyak, A. Petranovskaya, E. Oranskaya, N. Abramov, N. Opanashchuk, Synthesis and properties of magnetic nanostructures with carbonized surface, Himia, Fizika ta Tehnologia Poverhni. 9 (2018) 176-189. (in Ukrainian)

DOI: 10.15407/hftp09.02.176

Google Scholar

[28] Z. A. Duryagina, R. L. Holyaka, A. K. Borysyuk, The Automated Wide-Range Magnetometer for the Magnetic Phase Analysis of Alloys: Development and Application, Usp. Fiz. Met., 14 (2013) 33-66. (in Ukrainian)

DOI: 10.15407/ufm.14.01.033

Google Scholar

[29] B. Bestani, N. Benderdouche, B. Bestaali, M. Belhakem, A. Addou, Methylene blue and iodine adsorption onto an activated desert plant, Bioresour. Technol. 99 (2008) 8441-8444.

DOI: 10.1016/j.biortech.2008.02.053

Google Scholar

[30] O. Paşka, R. Ianoş, C. Păcurariu, A. Brădeanu, Magnetic nanopowder as effective adsorbent for the removal of Congo Red from aqueous solution, Water Sci. Technol. 69 (2013) 1234–1240.

DOI: 10.2166/wst.2013.827

Google Scholar

[31] M. Thommes, K. Kaneko, A. Neimark, J. Rodriguez-Reinoso, J. Rouquerol, K. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069.

DOI: 10.1515/pac-2014-1117

Google Scholar

[32] I. Bordun, E. Szymczykiewicz, Synthesis and Electrochemical Properties of Fe₃O₄/C Nanocomposites for Symmetric Supercapacitors, Appl. Sci. 14 (2024) 677.

DOI: 10.3390/app14020677

Google Scholar

[33] J. De Souza Macedo, N.B. da Costa Júnior, L.E. Almeida, E.F. da Silva Vieira, A.R. Cestari, I. de Fátima Gimenez, N.L. Villarreal Carreno, L.S. Barreto, Kinetic and calorimetric study of the adsorption of dyes on mesoporous activated carbon prepared from coconut coir dust, J. Colloid Interface Sci. 298 (2006) 515–522.

DOI: 10.1016/j.jcis.2006.01.021

Google Scholar

[34] R.W. Dapson, Amyloid from a histochemical perspective. A review of the structure, properties and types of amyloid, and a proposed staining mechanism for Congo red staining, Biotech. Histochem. 93 (2018) 543–556.

DOI: 10.1080/10520295.2018.1528385

Google Scholar

[35] C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. (1960) 3973-3993.

DOI: 10.1039/jr9600003973

Google Scholar

[36] M. Özacar, I.A. Sengil, Adsorption of metal complex dyes from aqueous solutions by pine sawdust, Bioresour. Technol. 96 (2005) 791–795.

DOI: 10.1016/j.biortech.2004.07.011

Google Scholar

[37] Y. Yao, F. Xu, M. Chen, Z. Xu, Z. Zhu, Adsorption behavior of methylene blue on carbon nanotubes, Bioresour. Technol. 101 (2010) 3040–3046.

DOI: 10.1016/j.biortech.2009.12.042

Google Scholar