[1]
V.K. Gupta, M.R. Islam, T. Pradeep, Advances in Water Purification Techniques: Meeting the Needs of Developed and Developing Countries. (2018).
Google Scholar
[2]
N. Tian, Y. Nie, X. Tian, Y. Wang, Y. Current, Water Treatment Technologies: An Introduction. In: Kharissova, O.V., Torres-Martínez, L.M., Kharisov, B.I. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. (2021) 2033–2066.
DOI: 10.1007/978-3-030-36268-3_75
Google Scholar
[3]
K. Tsytlishvili, N. Rashkevich, D. Poltavska, Research of Modern technologies of Wastewater Treatment of Food Products Combined with Ozonation and Hydrogen Peroxide. Key Engineering Materials. 925 (2022) 169–178.
DOI: 10.4028/p-t5m3y6
Google Scholar
[4]
A. Myroshnychenko, V. Loboichenko, M. Divizinyuk, A. Levterov, N. Rashkevich, O. Shevchenko, R. Shevchenko, Application of Up-to-Date Technologies for Monitoring the State of Surface Water in Populated Areas Affected by Hostilities. Bulletin of the Georgian National Academy of Sciences. 16 3 (2022) 50–59.
Google Scholar
[5]
V. Loboichenko, N.Nikitina, N. Leonova, O. Konovalova, A. Bondarenko, O. Zemlianskyi, N. Rashkevich, Study of the features of determination of heavy metals in bottom sediments. In IOP Conference Series: Earth and Environmental Science. 1348 1 (2024) 012014.
DOI: 10.1088/1755-1315/1348/1/012014
Google Scholar
[6]
M. Ludwigson, Ion Exchange for Water Treatment. SunCam. (2024).
Google Scholar
[7]
Veolia Water Technologies. Ion Exchange & Water Demineralization Handbook: Chapter 08 - Ion Exchange.
Google Scholar
[8]
J.C. Crittenden, R.R. Trussell, D.W. Hand, K.J. Howe, G. Tchobanoglous, MWH's Water Treatment: Principles and Design. John Wiley & Sons. (2012).
DOI: 10.1002/9781118131473
Google Scholar
[9]
E.P. Jacobs, J.P. Meyers, Ion Exchange Resins and Adsorbents in Chemical Processing. Marcel Dekker. (2000).
Google Scholar
[10]
F. Helfferich, Ion Exchange. McGraw-Hill. (1962).
Google Scholar
[11]
T. Xu, Regeneration of the Ion-Exchange Resin. In: Drioli, E., Giorno, L. (eds) Encyclopedia of Membranes. Springer, Berlin, Heidelberg. (2014).
Google Scholar
[12]
S.D. Alexandratos, Ion-exchange resins: A retrospective from Industrial and Engineering Chemistry Research. Industrial & Engineering Chemistry Research. 48(1) (2008) 388–398.
DOI: 10.1021/ie801242v
Google Scholar
[13]
Q.-X. Zhang, Z.-P. Zhang, A.-M. Li, B.-C. Pan, X.-L. Zhang, Advance in ion exchange and adsorption resins in China. Acta Polymerica Sinica. (2018).
Google Scholar
[14]
A. Ali, M. Sadia, M. Azeem, M.Z. Ahmad, M. Umar, Z. Ul Abbas, Ion exchange resins and their applications in water treatment and pollutants removal from environment: A review. Futuristic Biotechnology. (2023).
DOI: 10.54393/fbt.v3i03.51
Google Scholar
[15]
M.K. Barman, A. Bhattarai, B. Saha, Application of ion exchange resins in environmental cleanup. Vietnam Journal of Chemistry. 61(5) (2023).
Google Scholar
[16]
A.K. Pramanik, N. Tamang, A. Chatterjee, B. Saha, Ion-exchange resins for selective separation of toxic metals. In Ion-exchange resins: Biomedical and environmental applications. Materials Research Forum LLC. (2023).
DOI: 10.21741/9781644902219-4
Google Scholar
[17]
Electrochemical Methods for Water Purification, Ion Separations, and Energy Conversion. Chemical Reviews. 122(16) (2022) 13547–13635.
Google Scholar
[18]
S. Dushkin, S. Martynov, S. Dushkin, The increasing efficiency of upflow clarifiers at the drinking water preparation. Acta Periodica Technologica. 50 (2020) 17–27.
DOI: 10.2298/apt2051017d
Google Scholar
[19]
Y. Zelenko, M. Malovanyy, L. Tarasova, Optimization of heat and plants water purification. Chem. Chem. Technol.. 13(2) (2019) 218–223.
Google Scholar
[20]
A.C.W. Yap, H.S. Lee, J.L. Loo, N.S. Mohd, Electron generation in water induced by magnetic effect and its impact on dissolved oxygen concentration. Sustainable Environment Research. 21(1) (2021) 1–10.
DOI: 10.1186/s42834-021-00080-0
Google Scholar
[21]
J. Smith, The Magnetic Field Effects on Water and Its Magnetization. Water. (2014) 203–324.
Google Scholar
[22]
S.I. Jawad, M.O. Karkush, V.N. Kaliakin, Alteration of physicochemical properties of tap water passing through different intensities of magnetic field. Journal of the Mechanical Behavior of Materials. 32(1) (2023).
DOI: 10.1515/jmbm-2022-0246
Google Scholar
[23]
I.M. Zeron, J.L.F. Abascal, C. Vega, A force field of Li+, Na+, K+, Mg2+, Ca2+, Cl−, and SO42− in aqueous solution based on the TIP4P/2005 water model and scaled charges for the ions. The Journal of Chemical Physics. 151(13) (2019) Art. 134504.
DOI: 10.1063/1.5121392
Google Scholar
[24]
S. Dushkin, T. Shevchenko, Applying a modified aluminum sulfate solution in the processes of drinking water preparation. Eastern-European Journal of Enterprise Technologies. 4(10-106) (2020) 26–36.
DOI: 10.15587/1729-4061.2020.210096
Google Scholar
[25]
N. Khalifa Boufa, Investigation of the Effect of Magnetic Field on some Physical Properties of Water. International Science and Technology Journal. 26 (2021).
Google Scholar
[26]
N. Attan, D.P. Ramadhani, A. Munadhiroh, H. Nur, What is the Effect of a Magnetic Field on Dye Adsorption onto Graphite Carbon? Malaysian Journal of Fundamental and Applied Sciences. 19(6) (2023) 1190–1202.
DOI: 10.11113/mjfas.v19n6.3243
Google Scholar
[27]
DSTU 20298:2019. Ion Exchange Resins. Cationites. Technical Specifications.
Google Scholar
[28]
DSTU 20301:2019. Ion Exchange Resins. Anionites. Technical Specifications.
Google Scholar
[29]
V.D. Ruleva, M.A. Ponomar, A.D. Gorobchenko, I.A. Moroz, S.A. Shkirskaya, N.A. Kononenko, Y. Wang, C. Jiang, T. Xu, V.V. Nikonenko, Electrodialysis of moderately concentrated solutions: Experiment and modeling based on a simplified characterization of ion-exchange membranes. Desalination. (2024) 117533
DOI: 10.1016/j.desal.2024.117533
Google Scholar
[30]
A. Mahmoud, A.F.A. Hoadley, An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater. Water Research. 46(10) (2012) 3364–3376.
DOI: 10.1016/j.watres.2012.03.039
Google Scholar
[31]
H.R. Flodman, B.I. Dvorak, Brine reuse in ion-exchange softening: Salt discharge, hardness leakage, and capacity tradeoffs. Water Environment Research. 84(6) (2012) 535–543.
DOI: 10.2175/106143012x13373550427354
Google Scholar
[32]
J. Liu, J.K. Choe, Z. Sasnow, C.J. Werth, T.J. Strathmann, Application of a Re-Pd bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine. Water Research. 47(1) (2013) 91–101.
DOI: 10.1016/j.watres.2012.09.031
Google Scholar
[33]
A.M. Bergquist, J.K. Choe, T.J. Strathmann, C.J. Werth, Evaluation of a hybrid ion exchange-catalyst treatment technology for nitrate removal from drinking water. Water Research. 94 (2016) 62–72.
DOI: 10.1016/j.watres.2016.03.054
Google Scholar
[34]
R.S. Lokhande, S. Parab, Effect of temperature and amount of ion exchange resin on the rate of ion exchange reaction. Asian Journal of Chemistry. 19(4) (2007) 3299–3300.
Google Scholar
[35]
M. Rustam, D.C. Shallcross, Temperature-Dependent Model for the Prediction of Binary Ion Exchange Equilibria Involving Na+, K+, Ca2+ and Mg2+ Ions. Industrial & Engineering Chemistry Research. 53(34) (2014) 13436–13447.
DOI: 10.1021/ie5020102
Google Scholar
[36]
M. Shibukawa, A. Taguchi, Y. Suzuki, K. Saito, T. Hiaki, T. Yarita, Evaluation of thermal effects on separation selectivity in anion-exchange processes using ion-exchange chromatography with superheated water. Analyst. 137(13) (2012) 3105–3111.
DOI: 10.1039/c2an16229f
Google Scholar
[37]
M. Shibukawa, M. Yanagisawa, R. Morinaga, T. Shimasaki, S. Saito, S.-T. Wang, Y.-Q. Feng, Synergistic effect of temperature and background counterions on ion-exchange equilibria. RSC Advances. 8 (2018) 26849–26856.
DOI: 10.1039/c8ra03309a
Google Scholar