Problems of the Formation of Dangerous Cr(VI) Compounds in Portland Cement and their Elimination Using New Refractories

Article Preview

Abstract:

The article examines the physical-chemical features of the formation of the garnish on the lining of rotary kilns for firing cement clinker, the functional necessity of the garnish and the material science difficulties for its creation when developing new types of refractories, which solves the problem of the formation of Cr(VI) compounds in Portland cement. Thus, the analyzed problem of the formation of Cr(VI) compounds in Portland cements that are dangerous for the biocenosis and humans is the result of scientific and technological progress, the pursuit of leading manufacturers for the recycling of secondary raw materials and energy resources. At the same time, the timeliness of identifying the problem and its proactive, comprehensive solution with state support give a new impetus to the scientific and technical development of not only cement, but also related enterprises and scientific organizations. In Ukraine, the problem has been solved only in relation to the development and experimental testing of a new type of refractory material to replace magnesia-chromite for lining high-temperature zones of rotary kilns for firing cement clinker.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-29

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. G. Shvachko, V. Yu. Shcherbina, S. A. Borshchik, Thermal protection insulation in the lining of the rotary kilns. Modern engineering and innovative technologies. 16 (2021) 18–23.

Google Scholar

[2] J. Szczerba, E. Śnieżek, V.Antonovič, Evolution of Refractory Materials for Rotary Cement Kiln Sintering Zone. Refractories and Industrial Ceramics. 58(4) (2017) 426–433.

DOI: 10.1007/s11148-017-0123-y

Google Scholar

[3] I.D. Kashcheev, The Use of Refractories in the Lining of Rotary Cement Kilns, Refractories and Industrial Ceramics. 56(5) (2016) 483–485.

DOI: 10.1007/s11148-016-9873-1

Google Scholar

[4] Á. Obregón, J. L. Rodríguez-Galicia, J. López-Cuevas, P. Pena, C. Baudín, MgO-CaZrO3-based refractories for cement kilns, Journal of the European Ceramic Society. 31(1-2) (2011) 61–74.

DOI: 10.1016/j.jeurceramsoc.2010.08.020

Google Scholar

[5] G. Liu, N. Li, W. Yan, C. Gao, W. Zhou, Y. Li, Composition and microstructure of a periclase-composite spinel brick used in the burning zone of a cement rotary kiln Ceramics International. 40(6) (2014) 8149–8155.

DOI: 10.1016/j.ceramint.2014.01.010

Google Scholar

[6] Q. Fan, D. Xueke, Y. Wengang, L. Guoqi, L. Hongxia, Research Progress of Magnesia Chrome Refractories and Their Applicationin Greenization for High Temperature Furnace. Materials Reports. 33(23) (2019) 3882–3891.

Google Scholar

[7] A. Malfliet, S. Lotfian, L. Scheunis, V. Petkov, L. Pandelaers, P.T. Jones, B. Blanpain, Degradation mechanisms and use of refractory linings in copper production processes: A critical review. Journal of the European Ceramic Society. 34(3) (2014) 849–876.

DOI: 10.1016/j.jeurceramsoc.2013.10.005

Google Scholar

[8] M. Ludwig, E. Sniezek, I. Jastrzebska, R. Prorok, Y. Li, N. Liao, M. Nath, J. Vlcek, J. Szczerba, Corrosion Resistance of MgO and Cr2O3-Based Refractory Raw Materials to PbO-Rich Cu Slag Determined by Hot-Stage Microscopy and Pellet Corrosion Test. Materials. 15 (2022) 725.

DOI: 10.3390/ma15030725

Google Scholar

[9] S. Belgacem, H. Galai, H. Tiss, Qualitative and quantitative investigation of post-mortem cement refractory: The case of magnesia-spinel bricks. Ceramics International. 42(16) (2016) 19147–19155.

DOI: 10.1016/j.ceramint.2016.09.077

Google Scholar

[10] S. Liang, X. Yougang, L. Yun, Y. Shenghai, D. Wei, Interaction between magnesia-spinel refractory grains and cement clinker at high temperature. Journal of the Australian Ceramic Society. 53(2) (2017) 319–327.

DOI: 10.1007/s41779-017-0041-y

Google Scholar

[11] O.M. Borysenko, S.M. Logvinkov, G.M. Shabanova, А.М. Іshchenko, V.О. Arefiev, Special features of the structure of modifier of periclase-spinel materials with an increased thermal shock re-sistance. Scientific research on refractories and technical ceramics. 122-123 (2023) 60–72.

DOI: 10.35857/2663-3566.122-123.07

Google Scholar

[12] S. M. Logvinkov, O. M. Borysenko, A. A. Ivashura, H. M. Shabanova, V. M. Shumejko, A. M. Korohodska, Principles of ensuring thermal stability in innovative technology of periclase-spinel refractories. Voprosy Khimii i Khimicheskoi Tekhnologii. 5 (2024) 12–20.

DOI: 10.32434/0321-4095-2024-156-5-12-20

Google Scholar

[13] O. Borisenko, S. Logvinkov, G. Shabanova, O. Mirgorod, Thermodynamics of Solid-Phase Exchange Reactions Limiting the Subsolidus Structure of the System MgO-Al2O3-FeO-TiO2. Materials Science Forum Submitted. 1038 (2021) 177–184.

DOI: 10.4028/www.scientific.net/msf.1038.177

Google Scholar

[14] O. Borysenko, S. Logvinkov, G. Shabanova, Y. Pitak, A. Ivashura, I. Ostapenko, Subsolidus structure of the MgO – Al2O3 – FeO – TiO2 system. Chemistry & Chemical Technology. 16(3) (2022) 367–376.

DOI: 10.1063/5.0120139

Google Scholar