Comparison of a Hybrid Pipe Design for Replacement of New and Corroded Steel Pipes Subjected to Transverse Impacts

Article Preview

Abstract:

This study examines the performance of hybrid steel-GFRP pipes compared to steel pipes, with a focus on bonding properties and the occurrence of internal corrosion. Some pipes were worn screw-shaped to mimic the effects of corrosion. The hybrid material was manufactured from two steel pipes reinforced with GFRP, bonded with polyester resin and 10% styrene to reduce viscosity and prevent bubble formation. Distortion problems during the manufacture of the specimens are addressed. Results indicate greater deformation in the worn pipes than in the steel-only specimens, whereas the hybrid material showed no significant difference between the two types. The hybrid material supported higher loads in some probes, but only two hybrid probes failed. Strain gauges measured the deformations, and the composite material's behavior was examined under a microscope. The hybrid material presented a lower flexural modulus and greater compliance to cracking. Despite the performance of the proposed hybrid material not being able to stand up to steel’s superior mechanical properties, the study offers useful insights and recommendations for future research, backed by stress-strain graphs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-8

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.C. Rowlands. Corrosion of tube and pipe alloys due to polluted seawater. (Journal of Applied Chemistry, 1965), pp.57-63.

DOI: 10.1002/jctb.5010150201

Google Scholar

[2] D. Birchon. The use and abuse of materials in ocean engineering. (Proceedings of the Institution of Mechanical Engineers, 1970), pp.241-271.

DOI: 10.1243/pime_proc_1970_185_034_02

Google Scholar

[3] Food and Agriculture Organization of the United Nations. Global record of fishing vessels, refrigerated transport vessels and supply vessels. (2025).

Google Scholar

[4] D. Escudero. Materiales compuestos. Aplicaciones. (Informes De La Construcción, 2001).

DOI: 10.3989/ic.2001.v52.i472.676

Google Scholar

[5] A.C. Omaña, J.M. Arenas, J.C. Suárez (2022). Analysis of the behavior of fiberglass composite panels in contact with water subjected to repeated impacts. (Polymers, 2002), p.4051.

DOI: 10.3390/polym14194051

Google Scholar

[6] L. Bian, J. Xiao, J. Zeng, & S. Xing. Effects of seawater immersion on water absorption and mechanical properties of GFRP composites. (Journal of Composite Materials, Thousand Oaks, 2012), pp.3151-3162.

DOI: 10.1177/0021998312436992

Google Scholar

[7] D.B. Dittenber. Evaluation of a life prediction model and environmental effects of fatigue for glass fiber composite materials. (Structural Engineering International, 2010), pp.379-384.

DOI: 10.2749/101686610793557753

Google Scholar

[8] R.A. Shenoi, P.J. Read, G.L. Hawkins. Fatigue failure mechanisms in fibre-reinforced plastic laminated tee joints. (International Journal of Fatigue, 1995), pp.415-426.

DOI: 10.1016/0142-1123(95)98238-x

Google Scholar

[9] M.A. Herreros, J.C. Suárez, M.P. Pinilla, S.M. Alonso, F. López, I.D. de Ulzurrun. MaLECoN: un nuevo material híbrido laminado fibra-metal para construcción naval. (47° Congreso de Ingeniería Naval e Industria Marítima, Madrid, 2008).

Google Scholar

[10] J.C. Suárez, S. Miguel, I. Diez, P. Pinilla, M.A. Herreros, F. López. Modos de fallo en un material híbrido estructural para construcción naval: MaLECoN. (En Anales de Mecánica de la Fractura, 2004), pp.350-355.

Google Scholar

[11] F. López, I. Diez. Determinación de la energía de fractura adhesiva de uniones disimilares en materiales híbridos estructurales. (En Anales de Mecánica de la Fractura, 2004), pp.186-190.

DOI: 10.20868/upm.thesis.83915

Google Scholar

[12] K.C. Shin, J.J. Lee, K.H. Kim, M.C. Song, J.S. Huh. Axial crush and bending collapse of an aluminum/GFRP hybrid square tube and its energy absorption capability. (Composite Structures, 2002), p.279, 287.

DOI: 10.1016/s0263-8223(02)00094-6

Google Scholar

[13] S. Boria, A. Scattina, G. Belingardi. Axial crushing of metal-composite hybrid tubes: experimental analysis. (Procedia Structural Integrity, 2018), pp.102-117.

DOI: 10.1016/j.prostr.2017.12.012

Google Scholar

[14] G. Zhu, J. Liao, G. Sun. Comparative study on metal/CFRP hybrid structures under static and dynamic loading. (International Journal of Impact Engineering, 2020).

DOI: 10.1016/j.ijimpeng.2020.103509

Google Scholar

[15] H. Yang, H. Lei, G. Lu. Energy absorption and failure pattern of hybrid composite tubes under quasi-static axial compression. (Composites Part B: Engineering, 2020).

DOI: 10.1016/j.compositesb.2020.108217

Google Scholar