[1]
3D LifePrints UK Ltd (2020). Medical 3D Printing at the Point of Care - Improving Patient Outcomes With 3D Technologies.
Google Scholar
[2]
Parikh, H.H., Jadav, R., Joshi, P. (2023). 3-D Printing: A Review of Manufacturing Methods, Materials, Scope and Challenges, and Applications.
Google Scholar
[3]
Vallejo, D.O., Aroca, I., Lara, P., Paguay, A. (2024). Mechanical Testing and Durability Evaluation of 3D Printed Magnetic Closures for Adaptive Fashion.
DOI: 10.1007/978-3-031-63437-6_1
Google Scholar
[4]
https: //www.wevolver.com/article/how-3d-printing-is-enabling-faster-design-higher-productivity-and-more-customization-in-manufacturing.
Google Scholar
[5]
https://oxmaint.com/blog/post/5-causes-of-equipment-failure.
Google Scholar
[6]
Aramide, B.P., Popoola, A.P.I., Sadiku, E.R., Aramide, F.O., Jamiru, T., Pityana, S.L. (2021). Wear-resistant metals and Composites.
DOI: 10.1007/978-3-030-36268-3_177
Google Scholar
[7]
https://limblecmms.com/blog/equipment-failure/.
Google Scholar
[8]
Matos, M.A., Rocha, A.M.A.C. & Costa, L.A. Many-objective optimization of build part orientation in additive manufacturing.
Google Scholar
[9]
Bertling, J., Rommel, S. (2016). A Critical View of 3D Printing Regarding Industrial Mass Customization Versus Individual Desktop Fabrication. In: Ferdinand, JP., Petschow, U., Dickel, S. (eds) The Decentralized and Networked Future of Value Creation.
DOI: 10.1007/978-3-319-31686-4_5
Google Scholar
[10]
Chadha, U., Abrol, A., Vora, N.P. et al. Performance evaluation of 3D printing technologies: a review, recent advances, current challenges, and future directions.
DOI: 10.1007/s40964-021-00257-4
Google Scholar
[11]
Arefin, A. M. E., Khatri, N. R., Kulkarni, N., & Egan, P. F. (2021). Polymer 3D Printing Review: Materials, Process, and Design Strategies for Medical Applications.
DOI: 10.3390/polym13091499
Google Scholar
[12]
Iftekar, S.F.; Aabid, A.; Amir, A.; Baig, M. Advancements and Limitations in 3D Printing Materials and Technologies: A Critical Review. Polymers 2023.
DOI: 10.3390/polym15112519
Google Scholar
[13]
Cook, R. D., Malkus, D. S., Plesha, M. E., & Witt, R. J. (2002). Concepts and Applications of Finite Element Analysis.
Google Scholar
[14]
Manero, A.; Sparkman, J.; Dombrowski, M.; Smith, P.; Senthil, P.; Smith, S.; Rivera, V.; Chi, A. Evolving 3D-Printing Strategies for Structural and Cosmetic Components in Upper Limb Prosthesis.
DOI: 10.3390/prosthesis5010013
Google Scholar
[15]
Kristiawan, R. B., Imaduddin, F., Ariawan, D., Ubaidillah, & Arifin, Z. (2021). A review of the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters.
DOI: 10.1515/eng-2021-0063
Google Scholar
[16]
https://omnexus.specialchem.com/selection-guide/thermoplastic-polyurethanes-tpu.
Google Scholar
[17]
Xu, T., Shen, W., Lin, X., & Xie, Y. M. (2020). Mechanical Properties of Additively Manufactured Thermoplastic Polyurethane (TPU) Material Affected by Various Processing Parameters.
DOI: 10.3390/polym12123010
Google Scholar
[18]
https://www.creality.com/products/ender-5-pro-3d-printer.
Google Scholar
[19]
Naba Kumar Kalita, Minna Hakkarainen, Integrating biodegradable polyesters in a circular economy, Current Opinion in Green and Sustainable Chemistry Volume 40, 2023, 100751, ISSN 2452-2236.
DOI: 10.1016/j.cogsc.2022.100751
Google Scholar
[20]
Nishida, H. (2011). Development of materials and technologies for control of polymer recycling.
Google Scholar
[21]
https://www.matweb.com/.
Google Scholar
[22]
https://3dsolved.com/best-filament-to-3d-print-phone-cases/.
Google Scholar
[23]
https://www.mufasaspecialties.biz/jual-thermoplastic-polyurethane/.
Google Scholar
[24]
https://patents.google.com/patent/EP2271712B1/en.
Google Scholar
[25]
https://reliancerubberindustries.com/materials/silicone/?utm_source.
Google Scholar
[26]
https://www.angreen.com/news/density-of-thermoplastic-polyurethane-in-different-applications-in-cable.html?utm_source.
Google Scholar
[27]
https://www.rubber-tools.com/silicone-rubber-density-lb-in3-guide-in-depth/?utm_source.
Google Scholar