[1]
M.B. Djukic, V.S. Zeravcic, G.M. Bakic, A. Sedmak, B. Rajicic, Hydrogen damage of steels: A case study and hydrogen embrittlement model, Engineering Failure Analysis, 58 (2015) 485–498.
DOI: 10.1016/j.engfailanal.2015.05.017
Google Scholar
[2]
M.H. Meliani, Z. Azari, Y.G. Matvienko, G. Pluvinage, The Effect of Hydrogen on the Master Failure Curve of APL 5L Gas Pipe Steels, Procedia Engineering, 10 (2011) 942–947.
DOI: 10.1016/j.proeng.2011.04.155
Google Scholar
[3]
J. Capelle, J. Gilgert, G. Pluvinage, A fatigue initiation parameter for gas pipe steel submitted to hydrogen absorption, International Journal of hydrogen energy, 35 (2010) 833–843.
DOI: 10.1016/j.ijhydene.2009.10.063
Google Scholar
[4]
A.J. Slifka, E.S. Drexler, D.G. Stalheim, R.L. Amaro, D.S. Laurina, A.E. Stevenson, L.E. Hayden, The effect of microstructure on the hydrogen-assisted fatigue of pipeline steels, Proceedings of the ASME 2013 Pressure Vessels & Piping Division Conference, Paris, France (2013).
DOI: 10.1115/PVP2013-97217
Google Scholar
[5]
J.R. Fekete, J.W. Sowards, R.L. Amaro, Economic impact of applying high strength steels in hydrogen gas pipelines, International Journal of Hydrogen Energy, 40 (2015) https://doi.org/10547-10558.
DOI: 10.1016/j.ijhydene.2015.06.090
Google Scholar
[6]
E. Van den Eeckhout, I. De Baere, T. Depover, K. Verbeken, The effect of a constant tensile load on the hydrogen diffusivity in dual phase steel by electrochemical permeation experiments, Materials Science & Engineering A 773 (2020) 138872.
DOI: 10.1016/j.msea.2019.138872
Google Scholar
[7]
S. Salmi, M. Rhode, S. Jüttner, M. Zinke, Hydrogen determination in 22MnB5 steel grade by use of carrier gas hot extraction technique, Weld World, 59 (2015) 137–144.
DOI: 10.1007/s40194-014-0186-z
Google Scholar
[8]
J. Capelle, J. Gilgert, I. Dmytrakh, G. Pluvinage, Sensitivity of pipelines with steel API X52 to hydrogen embrittlement, International Journal of Hydrogen Energy, 33 (2008) 7630-7641.
DOI: 10.1016/j.ijhydene.2008.09.020
Google Scholar
[9]
H, Nykyforchyn, E. Lunarska, O. Tsyrulnyk, K. Nikiforov, G. Gabetta, Effect of the long-term service of the gas pipeline on the properties of the ferrite–pearlite steel, Materials and Corrosion, 60, 9 (2009) 716-725.
DOI: 10.1002/maco.200805158
Google Scholar
[10]
R.C. Souza, L.R. Pereira, L.M. Starling, J.N. Pereira, T.A. Simões, J.A.C. P. Gomes, A.H.S. Bueno, Effect of microstructure on hydrogen diffusion in weld and API X52 pipeline steel base metals under cathodic protection, International Journal of Corrosion, 4927210 (2017).
DOI: 10.1155/2017/4927210
Google Scholar
[11]
E. Steppan, P. Mantzke, B.R. Steffens, M. Rhode, T. Kannengiesser, Thermal desorption analysis for hydrogen trapping in microalloyed high-strength steels, Welding in the World, 61 (2017) 637–648.
DOI: 10.1007/s40194-017-0451-z
Google Scholar
[12]
T. Schaupp, W. Ernst, H. Spindler, T. Kannengiesser, Hydrogen-assisted cracking of GMA welded 960 MPa grade high-strength steels, International Journal of Hydrogen Energy 45 (2020) 20080-20093.
DOI: 10.1016/j.ijhydene.2020.05.077
Google Scholar
[13]
T. Schaupp, M. Rhode, H. Yahyaoui, T. Kannengiesser, Influence of heat control on hydrogen distribution in high-strength multi-layer welds with narrow groove, Welding in the World, 63 (2019) 607–616.
DOI: 10.1007/s40194-018-00682-0
Google Scholar
[14]
Z. Xiong, W. Zheng, L. Tang, J. Yang, Self-gathering effect of the hydrogen diffusion in welding induced by the solid-state phase transformation, Materials, 12, 2897 (2019).
DOI: 10.3390/ma12182897
Google Scholar
[15]
J. Yang, G. Liu, W. Zheng: Study on Hydrogen Diffusion Behavior during Welding of Heavy Plate, Materials, 13, 3887 (2020).
DOI: 10.3390/ma13173887
Google Scholar
[16]
P. Girish Kumar, K. Yu-ichi, Diffusible Hydrogen in Steel Weldments – A status review, Transactions of JWRI, 42, 1 (2013) 39-62.
Google Scholar
[17]
W.L. Costin, O. Lavigne, A. Kotousov, R. Ghomashchi, V. Linton, Investigation of hydrogen assisted cracking in acicular ferrite using site-specific micro-fracture tests, Materials Science & Engineering A 651 (2016) p.859–868.
DOI: 10.1016/j.msea.2015.11.044
Google Scholar
[18]
J. Kovács, J. Lukács, Systematic review of factors influencing the integrity of pipeline girth welds exposed to hydrogen, 77th IIW Annual Assembly and International Conference on Welding and Joining, Rodos, Greece X-2068-2024 (2024).
DOI: 10.1007/s40194-025-02034-1
Google Scholar
[19]
J. Kovács, J. Lukács, Hidrogénnel kapcsolatos károsodási módok acélcsövek esetén, Multidiszciplináris tudományok, 13, 1 (2023) 206-223.
DOI: 10.35925/j.multi.2023.1.15
Google Scholar
[20]
Y.S. Chen, C. Huang, P.Y. Liu, H.W. Yen, R. Niu, P. Burr, K.L. Moore, E. Martínez-Paneda, A. Atrensi, J.M. Cairney, Hydrogen trapping and embrittlement in metals – A review, submitted to International Journal of Hydrogen Energy (2024).
DOI: 10.1016/j.ijhydene.2024.04.076
Google Scholar
[21]
G.K. Padhy, Y. Komizo, Diffusible Hydrogen in Steel Weldments - A Status Review, Transactions of JWRI, 42 (2013) 39-62.
Google Scholar
[22]
Z. Weiss, Analysis of Hydrogen in Inorganic Materials and Coatings: A Critical Review, Hydrogen, 2, (2021) 225–245.
DOI: 10.3390/hydrogen2020012
Google Scholar
[23]
Information on https://www.pipingengineer.org/weld-imperfections-hydrogen-induced-cracks
Google Scholar
[24]
T. Schaupp, N. Schroeder, D. Schroepfer, T. Kannengiesser, Hydrogen-Assisted Cracking in GMA Welding of High-Strength Structural Steel—A New Look into This Issue at Narrow Groove, Metals, 11 (2021) 904.
DOI: 10.3390/met11060904
Google Scholar
[25]
T. Schaupp, M. Rhode, H. Yahyaoui, Influence of heat control on hydrogen distribution in high-strength multi-layer welds with narrow groove. Welding in the World, 63 (2019), 607-616.
DOI: 10.1007/s40194-018-00682-0
Google Scholar
[26]
G.K. Padhy, V. Ramasubbu, N. Murugesan, C. Remash, S.K. Albert, Effect of preheat and post-heating on diffusible hydrogen content of welds, Science and Technology of Welding and Joining, 17, 5 (2012) 408-413.
DOI: 10.1179/1362171812Y.0000000023
Google Scholar
[27]
G. Chakraborty, R. Rejeesh, O.V. Ramana, S.K. Albert, Evaluation of hydrogen-assisted cracking susceptibility in modified 9cr-1mo steel welds, Welding in the World, 64 (2020) 115-122.
DOI: 10.1007/s40194-019-00812-2
Google Scholar
[28]
Y.D. Han, R.Z. Wang, H.Y. Jing, L. Zhao, L.Y. Xu, P. Xin, Sulphide stress cracking behaviour of the coarsegrained heat-affected zone in X100 pipeline steel under different heat inputs, International Journal of Hydrogen Energy, 45 (2020) 20094-20105.
DOI: 10.1016/j.ijhydene.2020.05.092
Google Scholar
[29]
L.R.O. Costa, L.F. Lemus, D.S. dos Santos, Hydrogen embrittlement susceptibility of welded 2¼Cr-1Mo steel under elastic stress, International Journal of Hydrogen Energy, 40 (2015) 17128-17135.
DOI: 10.1016/j.ijhydene.2015.08.027
Google Scholar
[30]
T. Zhang, W. Zhao, Q. Deng, W. Jiang, Y. Wang, W. Jiang, Effect of microstructure inhomogeneity on hydrogen embrittlement susceptibility of X80 welding HAZ under pressurized gaseous hydrogen, International Journal of Hydrogen Energy, 42 (2017) 25102-25113.
DOI: 10.1016/j.ijhydene.2017.08.081
Google Scholar
[31]
T. Schaupp, M. Rhode, T. Kannengiesser, Influence of welding parameters on diffusible hydrogen content in high-strength steel welds using modified spray arc process, Welding in the World, 62 (2018) 9–18.
DOI: 10.1007/s40194-017-0535-9
Google Scholar
[32]
M.G.M. Carvalho, M.A. Lage, D.F. Cavalcante, K.S. Assis, A.L. Pinto, C. Labre, F.P. Alves, O.R. Mattos, Hydrogen embrittlement in dissimilar welded joints interfaces – Influence of manufacturing parameters and evaluation of methodologies, Corrosion Science, 224 (2023).
DOI: 10.1016/j.corsci.2023.111506
Google Scholar
[33]
T.T. Nguyen, H.M. Heo, J. Park, S.H. Nahm, U.B. Beak, Stress concentration affecting hydrogen-assisted crack in API X70 pipeline base and weld steel under hydrogen/natural gas mixture, Engineering Failure Analysis, 122 (2021).
DOI: 10.1016/j.engfailanal.2021.105242
Google Scholar
[34]
P. Nevasmaa, Prevention of Weld Metal Hydrogen Cracking in High-strength Multipass Welds, Welding in the World, 48, (2004) 2-18.
DOI: 10.1007/bf03266427
Google Scholar
[35]
ISO 5817 Welding. Fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded). Quality levels for imperfections (2023).
DOI: 10.3403/30143072
Google Scholar