The Research of the Cavitation Erosion Resistance of the Aluminium Alloy 2017 a Structure Obtained by WIG Remelted

Article Preview

Abstract:

The paper presents the results of the behavior and resistance to the erosion by cavitation of the 2017 A aluminium alloy structure, obtained by the WIG remelted method. The research is in step with the new directions of study and aims to extend the aluminum alloy 2017 A to the manufacture of parts that work in the cavitation regime, such as: pistons and valves of thermal engines, respectively various pump rotors or motor boat propellers. The analysis performed on the basis of the specific curves, constructed according to the indications of the ASTM G32-2016 normas, shows that structure, obtained by the WIG remelting, confers a constant behavior to the cyclic stresses of microjets generated by the hydrodynamics of the vibratory cavitation. The comparison of the results, based on the specific parameters, used in the laboratory and indicated by the ASTM G32-2016 norms shows a resistance to cavitation erosion, clearly superior to the semi-finished structure and those obtained by artificial aging heat treatment at 1800C and 120 0C, with duration of one hour.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-87

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Anton: Cavitația, Vol I, Editura Academiei RSR, Bucuresti (1984).

Google Scholar

[2] I. Anton: Cavitatia, Vol II, Editura Academiei RSR, Bucuresti (1985).

Google Scholar

[3] G. Baran: Contributii la studiul cavitatiei si eroziunii cavitationale, Facultatea Energetica, Teza de doctorat, I.P.B.(1978).

Google Scholar

[4] I. Bordeasu: Eroziunea cavitaţională asupra materialelor utilizate în construcţia maşinilor hidraulice şi elicelor navale. Efecte de scară, Timişoara, Teză de doctorat (1997).

Google Scholar

[5] J.M. Hobbs: Experience with a 20 – KC Cavitations erosion test, Erosion by Cavitations or Impingement, ASTM STP 408, Atlantic City, USA (1960).

Google Scholar

[6] J.M Hobbs: Vibratory cavitation erosion testing at nel, Confernce Machynery Groop, Edinburgh (1974).

Google Scholar

[7] A. Thiruvengadam and H.S. Preise: On testing materials for cavitation damage resistence, Report. Vol. 8(3) (1964) 39-56

Google Scholar

[8] J.P. Franc, J.L. Kueny, A. Karimi, D.H. Fruman, D. Fréchou, L. Briançon-Marjollet, J.L. Yves Billard, B. Belahadji, F. Avellan and J.M. Michel: La cavitation. Mécanismes physiques et aspects industriels, Press Universitaires de Grenoble, Grenoble, France, (1995)

Google Scholar

[9] J.P. Frank and J.M. Michel: Fundamentals of cavitation, Kluwer Academic Publishers-Dordrecht/Boston/London (2004)

Google Scholar

[10] R. Garcia, Comprehensive Cavitation damage Data for Water and Various Liquid Metals Including Correlation with Material and Fluid Properties, Technical Raport Nr. 6, The University of Michigan (1966).

Google Scholar

[11] J. K Steller: International cavitation erosion test – test facilities and experimental results, Journees Cavitation, Paris, March (1992).

Google Scholar

[12] W.J. Tomlinson, S.J. Matthews, Cavitation erosion of aluminium alloys, Journal of Materials Science vol.29 (1994) 1101-1108.

DOI: 10.1007/bf00351438

Google Scholar

[13] N. Tian, G. Wang, Y Zhou, K. Liu, G. Zhao, L. Zuo, Study of the Portevin-Le Chatelier (PLC) Characteristics of a 5083 Aluminum Alloy Sheet in Two Heat Treatment States, States Mater. Vol. 11, 1533 (2018).

DOI: 10.3390/ma11091533

Google Scholar

[14] A.N. Luca, Cercetarea rezistenței la eroziunea prin cavitație a unor aliaje cu bază de aluminiu cu tratament termic de îmbătrânire artificială, TEZĂ DE DOCTORAT, Timișoara (2024).

Google Scholar

[15] I. Mitelea, I. Bordeasu, F. Frant, I.D. Utu, C.M. Craciunescu, C. Ghera, Cavitation erosion characteristics of the EN AW - 6082 aluminum alloy by TIG surface remelting, Materials, vol. 16, issue 7 (2023).

DOI: 10.3390/ma16072563

Google Scholar

[16] L. d`Agostino, M.V. Salvetti, Fluid Dynamics of Cavitation and Cavitating Turbopumps, Springer Wien New York, vol. 496 (2007).

Google Scholar

[17] K. Yasakau, J. Tedim, M. Zheludkevich, M. Ferreira, Smart Self-healing Coatings for Corrosion Protection of Aluminium Alloys, Handbook of Smart Coatings for Materials Protection (2014) 224-274

DOI: 10.1533/9780857096883.2.224

Google Scholar

[18] Ø. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjolander, H-E. Ekstrom, Strengthening mechanisms in solid solution aluminum alloys, Metall, Mater, Trans, A 37, no.6, (2006) 1999.

DOI: 10.1007/s11661-006-0142-7

Google Scholar

[19] D. Istrate, I. Bordeasu, B. Ghiban, B., Istrate, B-G. Sbarcea, C. Ghera, A.N., Luca, P.O. Odagiu, B. Florea, D. Gubencu, Correlation between Mechanical Properties structural Characteristics and Cavitation Resistance of Rolled Aluminum Alloy Type 5083, Metals, vol. 13, issue 1067, 2023 https://doi.org/10.3390/met13061067 (2023)

DOI: 10.3390/met13061067

Google Scholar

[20] C.L. Salcianu, I.Bordeașu, B. Ghiban, N.A. Sîrbu, C. Ghera, A.N. Luca, O. Odagiu, R. Bădărău:"Research on the Influence of the Heat Treatment Temperature on the Cavitation Behavior of the Aluminum Alloy 2017 A", 13th International Conference on Innovative Technologies for Joining Advanced Materials. Timisoara, November 25-26, (2023) 55-62

DOI: 10.4028/p-t5fhog

Google Scholar

[21] I. Bordeaşu, A.N. Luca, I. Lazăr, D. Lază, R. Bădărău, B. Ghiban, A.D. Buzatu, A.M., Demian, O.P. Odagiu, M.L. Micu, Modification of Cavitation Erosion Resistance of Aluminum Alloy 7075 by Maintaining of Artificial Aging Heat Treatment at 180 C, Hidraulica, no.4, (2022) 33-41.

DOI: 10.3390/ma16175875

Google Scholar

[22] A.N. Luca, I. Bordeaşu, M.L. Micu, C. Ghera, R. Bădărău, C.L. Salcianu, O. Ostoia, M. Hluscu, A.N. Sirbu, Evaluating the Cavitation Erosion of 7075-T651 Aluminum Alloy Heat Treated by Artificial Aging at 140° C for 12 Hours, Solid State Phenomena, vol.349, (2023) 77-86

DOI: 10.4028/p-8dicak

Google Scholar

[23] A.N. Luca, I. Bordeasu, B. Ghiban, A.M. Demian, C. Ghera, Cavitation behavior study of the aging heat treated aluminum alloy 7075, International Conference on Applied Sciences (ICAS 2022), vol.2540, art.nr. 012037 (2023).

DOI: 10.1088/1742-6596/2540/1/012037

Google Scholar

[24] A.N. Luca, I. Bordeasu, B. Ghiban, C. Ghera, D. Istrate, D.C., Stroiţă, Modification Of The Cavitation Resistance By Hardening Heat Treatment At 450 °C Followed By Artificial Aging At 180 °C Of The Aluminum Alloy 5083 Compared To The State Of Cast Semi-Finished Product, Hidraulica, Nr. 1 (2022).

DOI: 10.3390/met13061067

Google Scholar

[25] D.P. Mutascu: Microstructura și rezistența la eroziune prin cavitație a unor straturi depuse prin sudare pe oțeluri inoxidabile Duplex, Teza de doctorat, Timișoara, Romania (2024).

Google Scholar

[26] I. Mitelea: Materiale inginereşti, Editura Politehnica, Timişoara, Romania (2009).

Google Scholar

[27] I. Mitelea: Studiul metalelor, Litografia Institutului Politehnic"Traian Vuia" Timisoara (1983).

Google Scholar

[28] *** ASTM E384 Standard Test Method for Microindentation Hardness of Materials (2022)

Google Scholar

[29] I. Bordeaşu, M.O. Popoviciu, C. Patrascoiu, V. Bălăsoiu, An Analytical Model for the Cavitation Erosion Characteristic Curves", Scientific Buletin Politehnica University of Timisoara, Transaction of Mechanics, Tom 49(63), Timişoara, (2004) 253-258.

Google Scholar

[30] A.N. Luca, I. Bordeasu, C. Ghera, I. Lazar, D. Bordeasu, C.E. Podoleanu, S.T. Duma, R. Badarau, Considerations Regarding The Effect Of The Temperature Heat Treatment Of Aging On Cavitation Erosion Behavior Of The Aluminum Alloy 2017 A., Annals of'Constantin Brancusi 'University of Targu-Jiu. Engineering Series, no.4 (2022).

DOI: 10.1088/1742-6596/2540/1/012037

Google Scholar

[31] ***Standard method of vibratory cavitation erosion test, ASTM, Standard G32 (2016).

Google Scholar

[32] I. Bordeasu: Monografia Laboratorului de Cercetare a Eroziunii prin Cavitație al Universității Politehnica Timișoara (1960-2020), Editura Politehnica, Timisoara (2020).

Google Scholar

[33] O. Oanca: Tehnici de optimizare a rezistenţei la eroziunea prin cavitaţie a unor aliaje CuAlNiFeMn destinate execuţiei elicelor navale, Teza de doctorat, Timișoara (2014).

Google Scholar

[34] P.O. Odagiu: Studii și cercetări experimentale privind comportarea mecanică și comportarea la eroziunea cavitațională a unui aliaj de aluminiu din seria 7075, Teza doctorat, Bucuresti, Romania (2023).

Google Scholar

[35] D. Istrate: Influența tratamentelor termice asupra comportarii unui aliaj din sistemul Al-Mg pentru aplicatii maritime, Teza doctorat, Bucuresti, Romania (2023).

Google Scholar

[36] I. Lazar, I. Bordeasu, L-D. Pirvulescu, M. Hluscu, M. Bazavan, L.M. Micu, C. Ghera, The Influence of the Hardening and Tempering Heat Treatment on the Strength of the CuZn39Pb3 Brass to Cavitation Erosion, Mechanisms and Machine Science , Vol. 109, (2022) 315 – 322.

DOI: 10.1007/978-3-030-88465-9_29

Google Scholar

[37] I. Mitelea, D. Mutașcu I.-D. Uțu, C.M. Crăciunescu, I. Bordeașu, Cavitation Erosion of the Austenitic Manganese Layers Deposited by Pulsed Current Electric Arc Welding on Duplex Stainless Steel Substrates", ISBN 20734352, Doi:10.3390/cryst14040315 (2024).

DOI: 10.3390/cryst14040315

Google Scholar

[38] M.E. Mânzână: Studii și cercetări experimentale privind modificările structurale produse prin cavitație-eroziune în diferite materiale metalice, Teza de doctorat, Bucuresti (2012).

Google Scholar