The Cavitation Behavior of the 6082 Alloy Aluminium Structure Obtained by WIG Remelted

Article Preview

Abstract:

Aluminum alloy 6082 is known for its use in the manufacture of structures that require welding interventions, high mechanical properties, resistance to pressure and corrosion, such as: boilers, truck structures, bicycles and motor boats. The recent research, regarding the cavitation resistance of the this alloy structure, shows a poor behavior of the semi-finished structure and somewhat improved by artificial aging volumetric heat treatment regimes. On the line of increasing the resistance of the this alloy structure, to the erosive demands of cavitation, they sign up of the rechearch results of the this paper, regarding the behavior and resistance of the vibratory cavitation of the aluminum alloy 6082 structure , obtained by WIG remelting. Comparing with the results obtained on the structures in the semi-finished state and through volume thermal treatments of artificial aging state, using the established parameters, recommended by the ASTM G32-2016 norms, a significant increase in the resistance to cyclic cavitation stresses is found, as a result of the increase in the surface hardness value. The novelty of the work consists in motivating the use of the remelting procedure of the surface structure of aluminum alloy 6082, through WIG remelting in order to increase the surface hardness, with a direct effect on increasing this structure resistance to the cyclical fatigue stresses of shock waves and microjets developed through the hydrodynamic mechanism of cavitation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-99

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Bordeasu: Monografia Laboratorului de Cercetare a Eroziunii prin Cavitație al Universității Politehnica Timișoara (1960-2020), Editura Politehnica, ISBN 978-606-35-0371-9, Timisoara (2020).

DOI: 10.59168/kmhd8192

Google Scholar

[2] A.N Luca: Cercetarea rezistenței la eroziunea prin cavitație a unor aliaje cu bază de aluminiu cu tratament termic de îmbătrânire artificială, Teza de doctorat, U.P. Timisoara, Romania (2024).

Google Scholar

[3] ***Information on https://ro.wikipedia.org/wiki/Isambard_Kingdom_Brunel.

Google Scholar

[4] ***Information on https://ro.wikipedia.org/wiki/RMS_Lusitania.

Google Scholar

[5] ***Information on https://ro.wikipedia.org/wiki/RMS_Mauretania.

Google Scholar

[6] D. Bordeașu, O. Proștean, I. Filip, F. Drăgan, C. Vașar, Modelling, Simulation and Controlling of a Multi-Pump System with Water Storage Powered by a Fluctuating and Intermittent Power Source, Mathematics, vol.10, no.21, 4019, (2022).

DOI: 10.3390/math10214019

Google Scholar

[7] D. Bordeasu, F. Dragan, I. Filip, I. Szeidert, I., G.O. Tirian, Estimation of Centrifugal Pump Efficiency at Variable Frequency for Irrigation Systems, Sustainability, vol. 16, no.10, 4134, 2024.

DOI: 10.3390/su16104134

Google Scholar

[8] D. Bordeasu, Study on the implementation of an alternative solution to the current irrigation system, Acta Technica Napocensis-Series: Applied Mathematics, Mechanics, And Engineering, vol. 65, no.3s, 2023.

Google Scholar

[9] D. Tokar, C. Stroita, A. Tokar, A. Rusen, Hybrid System that Integrates the Lost Energy Recovery on the Water-Water Heat Pump Exhaust Circuit, IOP Conference Series: Materials Science and Engineering, vol. 603, no. 4, 042002 (2019).

DOI: 10.1088/1757-899x/603/4/042002

Google Scholar

[10] D.C. Stroita, A.S. Manea, A. Cernescu, Blade polymeric material study of a cross-flow water turbine runner, Materiale Plastice, Volume 56, Issue 2, (2019) 366 – 369.

DOI: 10.37358/mp.19.2.5187

Google Scholar

[11] L.D`Agostino and M.V. Salvetti, Fluid Dynamics of Cavitation and Cavitating Turbopumps, Springer Wien New York, vol. 496 (2007).

Google Scholar

[12] W.J. Tomlinson, S.J. Matthews, Cavitation erosion of aluminium alloys, Journal of Materials Science vol.29, pp.1101-1108 (1994).

DOI: 10.1007/bf00351438

Google Scholar

[13] A. Bej, I. Bordeasu, T. Milos, R. Badarau, Considerations Concerning the Mechanical Strength of Wind Turbine Blades made of Fiberglass Reinforced Polyester, Materiale plastice, vol.49, no.3 (2012) 212-218.

Google Scholar

[14] J.P Franc, J.L. Kueny, A. Karimi, D.H. Fruman, D. Fréchou, L. Briançon-Marjollet., J.Y. Yves Billard, B. Belahadji, F. Avellan and J.M. Michel: La cavitation. Mécanismes physiques et aspects industriels, Press Universitaires de Grenoble, Grenoble, France (1995).

Google Scholar

[15] S. Vaidya and C.M. Preece: Cavitation erosion of age-hardenable aluminum alloys, vol.9 299–307 (1978).

DOI: 10.1007/bf02646379

Google Scholar

[16] J.P. Frank and J.M. Michel: Fundamentals of cavitation". Kluwer Academic Publishers-Dordrecht/Boston/London (2004).

Google Scholar

[17] J. K. Steller, International cavitation erosion test – test facilities and experimental results", 2 – emes Journees Cavitation, Paris, March (1992).

Google Scholar

[18] J.M. Hobbs: Experience with a 20 – KC Cavitations erosion test, Erosion by Cavitations or Impingement, ASTM STP 408, Atlantic City (1960).

Google Scholar

[19] R. Garcia, F. G. Hammitt and R.E Nystrom, Corelation of cavitation damage with other material and fluid properties, Erosion by Cavitation or Impingement, ASTM, STP 408 Atlantic City (1960).

DOI: 10.1520/stp46052s

Google Scholar

[20] J.M. Hobbs: Vibratory cavitation erosion testing at nel, Confernce Machynery Groop, Edinburgh (1974).

Google Scholar

[21] P.O. Odagiu: Studii și cercetări experimentale privind comportarea mecanică și comportarea la eroziunea cavitațională a unui aliaj de aluminiu din seria 7075, Teza doctorat, UP Bucuresti, Romania (2023).

Google Scholar

[22] D. Istrate: Influența tratamentelor termice asupra comportarii unui aliaj din sistemul Al-Mg pentru aplicatii maritime, Teza doctorat, U.P Bucuresti, Romania (2023).

Google Scholar

[23] D. Istrate, B-G. Sbârcea, A.M. Demian, A.D. Buzatu, L. Salcian, I. Bordeasu, L.M. Micu, C. Ghera, B. Florea, B. Ghiban, Correlation between Mechanical Properties—Structural Characteristics and Cavitation Resistance of Cast Aluminum Alloy Type Al-Mg. Crystals 12 (2022) 1538.

DOI: 10.3390/cryst12111538

Google Scholar

[24] I. Bordeasu, C. Ghera, D. Istrate, L. Sălcianu, B. Ghiban, D.V. Băzăvan, M.L. Micu, D. C. Stroita, A, Suta, I. Tomoiagă, A.N. Luca, Resistance and Behavior to Cavitation Erosion of Semi-Finished Aluminum Alloy 5083, Hidraulica, no. 4 (2021) 17-24.

DOI: 10.3390/ma16175875

Google Scholar

[25] D. Istrate, C. Ghera, L. Sălcianu, I. Bordeasu, B. Ghiban, D.V. Băzăvan, L.M. Micu, D-C. Stroiță, D. Ostoia, Heat Treatment Influence of Alloy 5083 on Cavitational Erosion Resistance, Hidraulica, no. 3 (2021) 15-25.

Google Scholar

[26] A.N. Luca, I. Bordeasu, B. Ghiban, C. Ghera, D. Istrate, D.C. Stroita, Modification of the Cavitation Resistance by Hardening Heat Treatment at 450 °C Followed by Artificial Aging at 180 °C of the Aluminum Alloy 5083 Compared to the State of Cast Semi-Finished Product, Hidraulica, no. 1 (2022) 39-45.

DOI: 10.3390/met13061067

Google Scholar

[27] D. Istrate, B. Istrate, B-G. Sbarcea, C. Ghera, A. N.Luca, I. Bordeasu, B. Ghiban, P.O. Odagiu, B. Florea, D. Gubencu, Correlation between Mechanical Properties structural Characteristics and Cavitation Resistance of Rolled Aluminum Alloy Type 5083, Metals, vol. 13, issue 1067 (2023).

DOI: 10.3390/met13061067

Google Scholar

[28] A. N. Luca, I. Bordeasu, B. Ghiban, A.M. Demian, C., Ghera, Cavitation behavior study of the aging heat treated aluminum alloy 7075, Journal of Physics: Conference Series, (ICAS 2022), Open Access, Volume 2540, Issue 1, Article number 012037, Banja Luka, 25 May 2022 (2023).

DOI: 10.1088/1742-6596/2540/1/012037

Google Scholar

[29] C. Ghera, O. P. Odagiu, V. Nagy, L. M. Micu, A.N. Luca, I. Bordeasu, M. A. Demian, A. D. Buzatu, B. Ghiban, Influence Of Ageing Time On Cavitation Resistance Of 6082 Aluminum Alloy, University Politehnica Of Bucharest Scientific Bulletin Series B-Chemistry And Materials Science, Vol. 84, Issue 4 (2022) 225-237.

DOI: 10.3390/ma16175875

Google Scholar

[30] L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Ed. Elsevier (2013).

Google Scholar

[31] J.R. Davis: Aluminum and Aluminum Alloys, ASM international (1993).

Google Scholar

[32] ***Information on https://www.youtube.com/watch?v=yWNOO3r7sXo, Sun Cavity Advantage - Sun Hydraulics.

Google Scholar

[33] N. Tian, G. Wang, Y. Zhou, K. Liu, G. Zhao, L. Zuo, Study of the Portevin-Le Chatelier (PLC) Characteristics of a 5083 Aluminum Alloy Sheet in Two Heat Treatment States, States Mater. Vol. 11, 1533 (2018).

DOI: 10.3390/ma11091533

Google Scholar

[34] ***Information on https://www.aviationaluminum.com/ro/news/what-is-6082-aluminum-alloy/

Google Scholar

[35] I. Mitelea: Materiale inginereşti, Editura Politehnica, Timişoara, Romania (2009).

Google Scholar

[36] ***Information on https://aluminiuminsider.com/aluminium-alloys-in-shipbuilding-a-fast-growing-trend/, Aluminium alloys in shipbuilding – a fast growing trend.

Google Scholar

[37] N.I. Kolobnev, L.B. Khokhlatova, D.K. Ryabov: Structure, properties and application of alloys of the Al-Mg-Si-(Cu) system, Met. Sci. Heat. Treat., vol.53 (2012) 440–444.

DOI: 10.1007/s11041-012-9412-8

Google Scholar

[38] D.P. Mutascu: Microstructura și rezistența la eroziune prin cavitație a unor straturi depuse prin sudare pe oțeluri inoxidabile Duplex, Teza de doctorat, Timișoara, Romania (2024).

Google Scholar

[39] O. Oanca: Tehnici de optimizare a rezistenţei la eroziunea prin cavitaţie a unor aliaje CuAlNiFeMn destinate execuţiei elicelor navale, Teza de doctorat, Timișoara, Romania (2014).

Google Scholar

[40] A. N. Luca, I. Bordeasu, L.M. Micu, B. Ghiban, C. Ghera, C.L. Salcianu, R. Badarau, D. Ostoia, M. Hluscu, N.A. Sirbu, Evaluating the Cavitation Erosion of 7075-T651 Aluminum Alloy Heat Treated by Artificial Aging at 140 °C for 12 Hours, Solid State Phenomena,Volume 349 (2023) 77 – 87.

DOI: 10.4028/p-8dicak

Google Scholar

[41] ***ASTM, Standard G32; Standard Method of Vibratory Cavitation Erosion Test. ASTM: West Conshohocken, PE, USA (2016).

Google Scholar

[42] I. Bordeasu, M.O. Popoviciu, C. Patrascoiu, V. Bălăsoiu, An Analytical Model for the Cavitation Erosion Characteristic Curves, Scientific Buletin Politehnica University of Timisoara, Transaction of Mechanics, Tom 49(63), Timişoara (2004) 253-258.

Google Scholar

[43] L.M. Micu, I. Bordeasu, M.O. Popoviciu, A New Model for the Equation Describing the Cavitation Mean Depth Erosion Rate Curve, Rev. Chim. (Bucharest), 68, no. 4 (2017) 894-898.

DOI: 10.37358/rc.17.4.5573

Google Scholar