[1]
I. Bordeasu: Monografia Laboratorului de Cercetare a Eroziunii prin Cavitație al Universității Politehnica Timișoara (1960-2020), Editura Politehnica, ISBN 978-606-35-0371-9, Timisoara (2020).
DOI: 10.59168/kmhd8192
Google Scholar
[2]
A.N Luca: Cercetarea rezistenței la eroziunea prin cavitație a unor aliaje cu bază de aluminiu cu tratament termic de îmbătrânire artificială, Teza de doctorat, U.P. Timisoara, Romania (2024).
Google Scholar
[3]
***Information on https://ro.wikipedia.org/wiki/Isambard_Kingdom_Brunel.
Google Scholar
[4]
***Information on https://ro.wikipedia.org/wiki/RMS_Lusitania.
Google Scholar
[5]
***Information on https://ro.wikipedia.org/wiki/RMS_Mauretania.
Google Scholar
[6]
D. Bordeașu, O. Proștean, I. Filip, F. Drăgan, C. Vașar, Modelling, Simulation and Controlling of a Multi-Pump System with Water Storage Powered by a Fluctuating and Intermittent Power Source, Mathematics, vol.10, no.21, 4019, (2022).
DOI: 10.3390/math10214019
Google Scholar
[7]
D. Bordeasu, F. Dragan, I. Filip, I. Szeidert, I., G.O. Tirian, Estimation of Centrifugal Pump Efficiency at Variable Frequency for Irrigation Systems, Sustainability, vol. 16, no.10, 4134, 2024.
DOI: 10.3390/su16104134
Google Scholar
[8]
D. Bordeasu, Study on the implementation of an alternative solution to the current irrigation system, Acta Technica Napocensis-Series: Applied Mathematics, Mechanics, And Engineering, vol. 65, no.3s, 2023.
Google Scholar
[9]
D. Tokar, C. Stroita, A. Tokar, A. Rusen, Hybrid System that Integrates the Lost Energy Recovery on the Water-Water Heat Pump Exhaust Circuit, IOP Conference Series: Materials Science and Engineering, vol. 603, no. 4, 042002 (2019).
DOI: 10.1088/1757-899x/603/4/042002
Google Scholar
[10]
D.C. Stroita, A.S. Manea, A. Cernescu, Blade polymeric material study of a cross-flow water turbine runner, Materiale Plastice, Volume 56, Issue 2, (2019) 366 – 369.
DOI: 10.37358/mp.19.2.5187
Google Scholar
[11]
L.D`Agostino and M.V. Salvetti, Fluid Dynamics of Cavitation and Cavitating Turbopumps, Springer Wien New York, vol. 496 (2007).
Google Scholar
[12]
W.J. Tomlinson, S.J. Matthews, Cavitation erosion of aluminium alloys, Journal of Materials Science vol.29, pp.1101-1108 (1994).
DOI: 10.1007/bf00351438
Google Scholar
[13]
A. Bej, I. Bordeasu, T. Milos, R. Badarau, Considerations Concerning the Mechanical Strength of Wind Turbine Blades made of Fiberglass Reinforced Polyester, Materiale plastice, vol.49, no.3 (2012) 212-218.
Google Scholar
[14]
J.P Franc, J.L. Kueny, A. Karimi, D.H. Fruman, D. Fréchou, L. Briançon-Marjollet., J.Y. Yves Billard, B. Belahadji, F. Avellan and J.M. Michel: La cavitation. Mécanismes physiques et aspects industriels, Press Universitaires de Grenoble, Grenoble, France (1995).
Google Scholar
[15]
S. Vaidya and C.M. Preece: Cavitation erosion of age-hardenable aluminum alloys, vol.9 299–307 (1978).
DOI: 10.1007/bf02646379
Google Scholar
[16]
J.P. Frank and J.M. Michel: Fundamentals of cavitation". Kluwer Academic Publishers-Dordrecht/Boston/London (2004).
Google Scholar
[17]
J. K. Steller, International cavitation erosion test – test facilities and experimental results", 2 – emes Journees Cavitation, Paris, March (1992).
Google Scholar
[18]
J.M. Hobbs: Experience with a 20 – KC Cavitations erosion test, Erosion by Cavitations or Impingement, ASTM STP 408, Atlantic City (1960).
Google Scholar
[19]
R. Garcia, F. G. Hammitt and R.E Nystrom, Corelation of cavitation damage with other material and fluid properties, Erosion by Cavitation or Impingement, ASTM, STP 408 Atlantic City (1960).
DOI: 10.1520/stp46052s
Google Scholar
[20]
J.M. Hobbs: Vibratory cavitation erosion testing at nel, Confernce Machynery Groop, Edinburgh (1974).
Google Scholar
[21]
P.O. Odagiu: Studii și cercetări experimentale privind comportarea mecanică și comportarea la eroziunea cavitațională a unui aliaj de aluminiu din seria 7075, Teza doctorat, UP Bucuresti, Romania (2023).
Google Scholar
[22]
D. Istrate: Influența tratamentelor termice asupra comportarii unui aliaj din sistemul Al-Mg pentru aplicatii maritime, Teza doctorat, U.P Bucuresti, Romania (2023).
Google Scholar
[23]
D. Istrate, B-G. Sbârcea, A.M. Demian, A.D. Buzatu, L. Salcian, I. Bordeasu, L.M. Micu, C. Ghera, B. Florea, B. Ghiban, Correlation between Mechanical Properties—Structural Characteristics and Cavitation Resistance of Cast Aluminum Alloy Type Al-Mg. Crystals 12 (2022) 1538.
DOI: 10.3390/cryst12111538
Google Scholar
[24]
I. Bordeasu, C. Ghera, D. Istrate, L. Sălcianu, B. Ghiban, D.V. Băzăvan, M.L. Micu, D. C. Stroita, A, Suta, I. Tomoiagă, A.N. Luca, Resistance and Behavior to Cavitation Erosion of Semi-Finished Aluminum Alloy 5083, Hidraulica, no. 4 (2021) 17-24.
DOI: 10.3390/ma16175875
Google Scholar
[25]
D. Istrate, C. Ghera, L. Sălcianu, I. Bordeasu, B. Ghiban, D.V. Băzăvan, L.M. Micu, D-C. Stroiță, D. Ostoia, Heat Treatment Influence of Alloy 5083 on Cavitational Erosion Resistance, Hidraulica, no. 3 (2021) 15-25.
Google Scholar
[26]
A.N. Luca, I. Bordeasu, B. Ghiban, C. Ghera, D. Istrate, D.C. Stroita, Modification of the Cavitation Resistance by Hardening Heat Treatment at 450 °C Followed by Artificial Aging at 180 °C of the Aluminum Alloy 5083 Compared to the State of Cast Semi-Finished Product, Hidraulica, no. 1 (2022) 39-45.
DOI: 10.3390/met13061067
Google Scholar
[27]
D. Istrate, B. Istrate, B-G. Sbarcea, C. Ghera, A. N.Luca, I. Bordeasu, B. Ghiban, P.O. Odagiu, B. Florea, D. Gubencu, Correlation between Mechanical Properties structural Characteristics and Cavitation Resistance of Rolled Aluminum Alloy Type 5083, Metals, vol. 13, issue 1067 (2023).
DOI: 10.3390/met13061067
Google Scholar
[28]
A. N. Luca, I. Bordeasu, B. Ghiban, A.M. Demian, C., Ghera, Cavitation behavior study of the aging heat treated aluminum alloy 7075, Journal of Physics: Conference Series, (ICAS 2022), Open Access, Volume 2540, Issue 1, Article number 012037, Banja Luka, 25 May 2022 (2023).
DOI: 10.1088/1742-6596/2540/1/012037
Google Scholar
[29]
C. Ghera, O. P. Odagiu, V. Nagy, L. M. Micu, A.N. Luca, I. Bordeasu, M. A. Demian, A. D. Buzatu, B. Ghiban, Influence Of Ageing Time On Cavitation Resistance Of 6082 Aluminum Alloy, University Politehnica Of Bucharest Scientific Bulletin Series B-Chemistry And Materials Science, Vol. 84, Issue 4 (2022) 225-237.
DOI: 10.3390/ma16175875
Google Scholar
[30]
L.F. Mondolfo: Aluminum Alloys: Structure and Properties, Ed. Elsevier (2013).
Google Scholar
[31]
J.R. Davis: Aluminum and Aluminum Alloys, ASM international (1993).
Google Scholar
[32]
***Information on https://www.youtube.com/watch?v=yWNOO3r7sXo, Sun Cavity Advantage - Sun Hydraulics.
Google Scholar
[33]
N. Tian, G. Wang, Y. Zhou, K. Liu, G. Zhao, L. Zuo, Study of the Portevin-Le Chatelier (PLC) Characteristics of a 5083 Aluminum Alloy Sheet in Two Heat Treatment States, States Mater. Vol. 11, 1533 (2018).
DOI: 10.3390/ma11091533
Google Scholar
[34]
***Information on https://www.aviationaluminum.com/ro/news/what-is-6082-aluminum-alloy/
Google Scholar
[35]
I. Mitelea: Materiale inginereşti, Editura Politehnica, Timişoara, Romania (2009).
Google Scholar
[36]
***Information on https://aluminiuminsider.com/aluminium-alloys-in-shipbuilding-a-fast-growing-trend/, Aluminium alloys in shipbuilding – a fast growing trend.
Google Scholar
[37]
N.I. Kolobnev, L.B. Khokhlatova, D.K. Ryabov: Structure, properties and application of alloys of the Al-Mg-Si-(Cu) system, Met. Sci. Heat. Treat., vol.53 (2012) 440–444.
DOI: 10.1007/s11041-012-9412-8
Google Scholar
[38]
D.P. Mutascu: Microstructura și rezistența la eroziune prin cavitație a unor straturi depuse prin sudare pe oțeluri inoxidabile Duplex, Teza de doctorat, Timișoara, Romania (2024).
Google Scholar
[39]
O. Oanca: Tehnici de optimizare a rezistenţei la eroziunea prin cavitaţie a unor aliaje CuAlNiFeMn destinate execuţiei elicelor navale, Teza de doctorat, Timișoara, Romania (2014).
Google Scholar
[40]
A. N. Luca, I. Bordeasu, L.M. Micu, B. Ghiban, C. Ghera, C.L. Salcianu, R. Badarau, D. Ostoia, M. Hluscu, N.A. Sirbu, Evaluating the Cavitation Erosion of 7075-T651 Aluminum Alloy Heat Treated by Artificial Aging at 140 °C for 12 Hours, Solid State Phenomena,Volume 349 (2023) 77 – 87.
DOI: 10.4028/p-8dicak
Google Scholar
[41]
***ASTM, Standard G32; Standard Method of Vibratory Cavitation Erosion Test. ASTM: West Conshohocken, PE, USA (2016).
Google Scholar
[42]
I. Bordeasu, M.O. Popoviciu, C. Patrascoiu, V. Bălăsoiu, An Analytical Model for the Cavitation Erosion Characteristic Curves, Scientific Buletin Politehnica University of Timisoara, Transaction of Mechanics, Tom 49(63), Timişoara (2004) 253-258.
Google Scholar
[43]
L.M. Micu, I. Bordeasu, M.O. Popoviciu, A New Model for the Equation Describing the Cavitation Mean Depth Erosion Rate Curve, Rev. Chim. (Bucharest), 68, no. 4 (2017) 894-898.
DOI: 10.37358/rc.17.4.5573
Google Scholar