[1]
Failure Criteria of fibre-reinforced-polymer Composites (Part B of the Failure Exercise). Composites Science and Technology 62 (2002), 12-13, 1479-1797.
Google Scholar
[2]
Part C of the Failure Exercise, Composites Science and Technology (in press 2003).
Google Scholar
[3]
Hinton, M.J. and Soden, P.D.: Predicting failure in composite laminates: the background to the Exercise. Composites Science and Technology 58 (1998), 7, pp.1001-1010.
DOI: 10.1016/s0266-3538(98)00074-8
Google Scholar
[4]
Soden, P.D., Hinton, M.J. and Kaddour, A.S.: Lamina Properties, Lay-up Configurations and loading conditions for a Range of Fibre-reinforced Composite Laminates. Special Issue, Composite Science and Technology 58 (1998), 1011-1022.
DOI: 10.1016/s0266-3538(98)00078-5
Google Scholar
[5]
Soden, P. D., Hinton, M. J. and Kaddour, A. S.: Experimental failure stresses and deformations for a range of composite laminates subjected to uniaxial and biaxial loads. Composites Science and Technology 63 (2003).
Google Scholar
[6]
Hinton, M. J., Kaddour, A. S. and Soden, P. D.: A Comparison of the Predictive Capabilities of Current Failure Theories for Composite Laminated, Judged against Experimental Evidence. Composite Science and Technology 62 (2002), 1725-1797.
DOI: 10.1016/s0266-3538(02)00125-2
Google Scholar
[7]
Guidelines 728 JET, DORNIER Luftfahrt GmbH: Structural Analysis and Certification Documentation.
Google Scholar
[8]
Cuntze, R G and A. Freund: The Predictive Capability of Failure Mode Concept-based Strength Criteria for Multidirectional Laminates. Part A. Composites Science and Technology, (ready for press).
DOI: 10.1016/b978-008044475-8/50018-4
Google Scholar
[9]
Puck, A. and Schürmann, H.: Failure Analysis of FRP Laminates by Means of Physically based Phenomenological Models. Composites Science and Technology 62 (2002), 1633-1662.
DOI: 10.1016/s0266-3538(01)00208-1
Google Scholar
[10]
Cuntze, R.G., Deska, R., Szelinski, B., Jeltsch-Fricker, R., Meckbach, S., Huybrechts, D., Kopp, J., Kroll, L., Gollwitzer, S., and Rackwitz, R.: Neue Bruchkriterien und Festigkeitsnachweise für unidirektionalen Faserkunststoffverbund unter mehrachsiger Beanspruchung -Modellbildung und Experimente-. VDIFortschrittbericht, Reihe 5, Nr. 506 (1997).
Google Scholar
[11]
Tsai, S.W. and Wu, E.M.: A General Theory of Strength for An-isotropic Materials. Journal Comp. Materials 5 (1971), 58-80.
Google Scholar
[12]
Rackwitz, R. and Cuntze, R.G.: System Reliability Aspects in Composite Structures. Eng. ' Opt. 11 (1987), 69-76.
Google Scholar
[13]
Cuntze, R.G.: Deterministic and Probabilistic Prediction of the Distribution of Inter-Fibre Failure Test Data of Pre-strained CFRP Tubes composed of Thin Layers and loaded by radial pressure. Wollongong. Advanced Composites '93, 579-585. The Minerals, Metals & Materials Society, (1993).
Google Scholar
[14]
Cuntze, R. G: The Predictive Capability of Failure Mode Concept-based Strength Criteria for Multidirectional Laminates. Part B. Composites Science and Technology, (ready for press for Part C edition).
DOI: 10.1016/b978-008044475-8/50018-4
Google Scholar
[15]
VDI 2014: German Guideline, sheet 3 Development of FRP components, Analysis,. (German and English. Ready for press).
Google Scholar
[16]
Michaeli, W. and Knops, M.: Stress and strength analysis of structural components with inter fiber failure. -Experimental and theoretical work-. Proceedings SAMPE, Long Beach, May, 12-16, (2002).
Google Scholar