Scattering of SH Waves by an Arc-Shaped Crack between a Cylindrical Piezoelectric Inclusion and the Matrix: Near Fields

Abstract:

Article Preview

Info:

Periodical:

Key Engineering Materials (Volumes 251-252)

Edited by:

F.-G. Buchholz, H.A. Richard, M.H. Aliabadi

Pages:

215-220

Citation:

X. Y. Wang and S. W. Yu, "Scattering of SH Waves by an Arc-Shaped Crack between a Cylindrical Piezoelectric Inclusion and the Matrix: Near Fields", Key Engineering Materials, Vols. 251-252, pp. 215-220, 2003

Online since:

October 2003

Export:

Price:

$38.00

[1] Chen, Z. and Yu , S. Crack tip fields of piezoelectric materials under antiplane impact. Chinese Science Bulletin Vol. 42, (1997) 1615-1619.

DOI: https://doi.org/10.1007/bf02882570

[2] Erdogan, F. and Gupta, G. On the numerical solution of singular integral equations. Quarterly Journal of Applied Mechanics Vol. 29, (1972). 525-534.

[3] Narita, F. and Shindo, Y. (1998). Scattering of Love waves by a surface-breaking crack in piezoelectric layered media. JSME International Journal, Vol. 41, 40-48 5.

DOI: https://doi.org/10.1299/jsmea.41.40

[4] Li, S. and Mataga, P. Dynamic crack propagation in piezoelectric materials-Part II. Vacuum solution. Journal of Mechanics and Physics of Solids Vol. 44, (1996) 1831-1866.

DOI: https://doi.org/10.1016/0022-5096(96)00056-7

[5] Wang XY , Yu SW, Scattering of SH wave by an arc-shaped crack between a cylindrical piezoelectric inclusion and matrix -II: far field , Int. J. Fract., Vol. 100, No. 4, ( 1999) L35-L40.

[6] Pao, Y. and Mow, C. Diffraction of Elastic Waves and Dynamic Stress Concentrations. Crane and Russak, New York(1973).

2 4 6 8 1 0.

[1] [2] [3] [4] M a t r ix : P Z T - 4 I n c lu s io n : B a T iO 3 θ0= 0 α= 0 . 1 7 π α= 0 . 5 π α= 0 . 8 5 π α= 0 . 9 8 π K3b/(c.

[1] 44+e1.

[15] [2] /ε.

[1] 11)/K1/A/r0 1/2 K 1 r 0 6 Fig. 3 The absolute values of normalized DSIF versus K1r0 with different �0. Fig. 4 The absolute values of normalized DSIF versus K1r0 with another kind of matched inclusion and matrix materials.

2 4 6 8 10 0. 0 0. 2 0. 4 0. 6 0. 8 1. 0 1. 2 1. 4 1. 6 1. 8 θ0=-0. 5π θ0=-π θ0=0 θ0=-0. 25π Matrix: PZT-4 Inclusion: BaTiO3 α=0. 75π K3b/(c.

[1] 44+e.

[1] [15] [2] /ε.

[1] 11)/K1/A/r0 1/2 K1r0.

2 4 6 8 10.

[1] [2] [3] [4] [5] [6] α=0. 17π α=0. 5π α=0. 85π α=0. 98π Matrix: BaTiO3 Inclusion: PZT-4 θ0=0 K3b/(c.

[1] 44+e.

[1] [15] [2] /ε.

[1] 11)/K1/A/r0 1/2 K1r0 7.