Computation of Dynamic Stress in Flexible Multi-Body Dynamics Using Absolute Nodal Coordinate Formulation

Article Preview

Abstract:

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 270-273)

Pages:

1427-1433

Citation:

Online since:

August 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Yim, H. J., Lee, S. B., An integrated CAE system for dynamic stress and fatigue life prediction of mechanical systems, J. of the KSPE, Vol. 10, No. 2 (1996), pp.158-168.

DOI: 10.1007/bf02953655

Google Scholar

[2] Ryu, J. H., Kim, H. S., Yim, H. J., An efficient and accurate dynamic stress calculation by flexible multibody dynamic system simulation and reanalysis, International J. of the KSME, Vol. 11, No. 4 (1997), pp.386-396.

DOI: 10.1007/bf02945077

Google Scholar

[3] LMS, DADS Flex Manual Revision 9. 5, The LMS Corporation (2001).

Google Scholar

[4] Yoo, W. S., Haug, E. J., Dynamic of articulated structures, Part 1: Theory, J. of Structural Mechanism, Vol. 14, No. 1 (1986), pp.105-126.

Google Scholar

[5] Shabana, A. A., Computer Implementation of the absolute nodal coordinate formulation for flexible multibody dynamics, J. of Nonlinear Dynamics, Vol. 16 (1998), pp.293-306.

Google Scholar

[6] Escalona, J. L., Hussien, H. A., Shabana, A. A., Application of the absolute nodal coordinate formulation to multibody system dynamics, J. of Nonlinear Dynamics, Vol. 16 (1998), pp.293-306.

DOI: 10.1006/jsvi.1998.1563

Google Scholar

[7] Yoo, W. S., Lee, J. H., Sohn, J. H., Physical experiments for large deformation problems, Proc. of the KSME Spring Conference, No. 03S115 (2003), pp.705-710.

Google Scholar

[8] Hibbitt, Karlsson & Sorensen., ABAQUS/ STANDARD Manual, , Hibbitt, Karlsson & Sorensen Inc.

Google Scholar

[9] Shabana, A. A., Definition of the elastic forces in the finite-element absolute nodal coordinate formulation, J. of Multibody System Dynamics, Vol. 5 (2001), pp.21-54.

Google Scholar

[10] Haug, E. J., Computer-Aided Kinematics and Dynamics of Mechanical Systems, Allyn and Bacon (1989), pp.218-230.

Google Scholar

[11] Craig R. R., Mechanics of Materials, John Wiley & Sons (1996), pp.258-265.

Google Scholar

[12] Goetz, A., Introduction to Differential Geometry, Addision Wesley Publishing Company (1970).

Google Scholar

[13] Barlow, J., Optimal Stress Locations in Finite Element Models, J. of Numerical Methods in Engineering, Vol. 10 (1976), pp.243-251.

DOI: 10.1002/nme.1620100202

Google Scholar