Evaluation of Human Bone Elastic Stiffness by Resonant Ultrasound Spectroscopy and Micro Finite Element Method

Article Preview

Abstract:

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 270-273)

Pages:

2079-2084

Citation:

Online since:

August 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.Y. Rho: An ultrasonic method for measuring the elastic properties of human tibial cortical and cancellous bone, Ultrasonics Vol. 34 (1996), p.777.

DOI: 10.1016/s0041-624x(96)00078-9

Google Scholar

[2] J.M. Crolet, B. Aoubiza and A. Meunier: Compact bone: numerical simulation of mechanical characteristics, J. Biomechanics Vol. 26 (1993), p.677.

DOI: 10.1016/0021-9290(93)90031-9

Google Scholar

[3] B.V. Rietbergen, A. Odgaard, J. Kabel and R. Huiskes: Direct mechanical assessment of elastic symmetries and properties of trabecular bone architecture, J. Biomechanics Vol. 29 (1996), pp.1653-1657.

DOI: 10.1016/s0021-9290(96)80021-2

Google Scholar

[4] S.C. Cowin: Bone poroelasticity, J. Biomechanics Vol. 32 (1999), pp.217-238.

Google Scholar

[5] G. Yang, J. Kabel, B.V. Rietbergen, A. Odgaard, R. Huiskes and S. Cowin: The anisotropic Hooke's law for cancellous bone and wood, J. Elasticity Vol. 53 (1999), pp.125-146.

DOI: 10.1115/imece1999-0435

Google Scholar

[6] A. Migliori and J.L. Sarrao, Resonant ultrasound spectroscopy, (Wiley, New York 1997).

Google Scholar

[7] A. Odgaard, K. Andersen, F. Melsen and H.J.G. Gundersen: A direct method for fast threedimensional serial reconstruction, J. Microsc. Vol. 159 (1990), pp.335-342.

DOI: 10.1111/j.1365-2818.1990.tb03038.x

Google Scholar

[8] S.C. Cowin and M.M. Mehrabadi: On the identification of material symmetry for anisotropic elastic materials, Q. J. Mech. Appl. Math. Vol. 40 (1987), pp.451-476.

DOI: 10.1093/qjmam/40.4.451

Google Scholar

[9] D.C. Wirtz, N. Schiffers, T. Pandorf, K. Radermacher, D. Weichert and R. Forst, Critical evaluation of known bone material properties to realize proximal femur, J. Biomechanics Vol. 33 (2000), pp.1325-1330.

DOI: 10.1016/s0021-9290(00)00069-5

Google Scholar

[10] D.R. Carter, G.H. Schwab and D.M. Spengler, Tensile fracture of cancellous bone. Acta Orthopaedica Scandinavica Vol. 51(1980), pp.733-741.

DOI: 10.3109/17453678008990868

Google Scholar

[11] J.C. Lotz, T.N. Gerhart and W.C. Hayes, Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J. Computer Assisted Tomography Vol. 14(1990), pp.107-114.

DOI: 10.1097/00004728-199001000-00020

Google Scholar

[12] P. Knauβ, Material properties and strength behavior of spongy bone tissue at the coxal human femur. Biomedical Technology Vol. 26(1981a), pp.200-210.

DOI: 10.1515/bmte.1981.26.9.200

Google Scholar

[13] J.D. Currey, Bones : Structures and mechanics, (Princeton University Press, Princeton 2002).

Google Scholar