[1]
Brown et al., Acta Orthop, Vol. 51 (l980), pp.429-437.
Google Scholar
[2]
Hildebrand and Ruegsegger, Quantification of bone microarchitecture with the structure model index, Com. Meth Biomech Biomed Eng, Vol. 1 (l997), pp.15-23.
Google Scholar
[3]
A. Odgaard, Three-dimensional methods for quantification of cancellous bone architecture, Bone Vol. 20 (1997), pp.315-328.
DOI: 10.1016/s8756-3282(97)00007-0
Google Scholar
[4]
A.M. Parfitt, M.K. Drezner, F.H. Glorieux, J.A. Kanis, H. Malluche, P.J. Meunier, S.M. Ott and R.R. Recker, Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee., J. Bone and Miner Res, Vol. 2 (1987).
DOI: 10.1002/jbmr.5650020617
Google Scholar
[5]
B.V. Rietbergen, H. Weinans, R. Huiskes and B.J.W. Polman, Computational strategies for iterative solutions of large FEM applications employing voxel data, Int J Num Meth Eng Vol. 39 (l996), pp.2743-2767.
DOI: 10.1002/(sici)1097-0207(19960830)39:16<2743::aid-nme974>3.0.co;2-a
Google Scholar
[6]
B.V. Rietbergen, H. Weinans, R. Huiskes and A. Odgaard, A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models, J. Biomechanics Vol. 28 (1995), p.69-8l.
DOI: 10.1016/0021-9290(95)80008-5
Google Scholar
[7]
A. Odgaard, K. Andersen, F. Melsen and H.J.G. Gundersen: A direct method for fast threedimensional serial reconstruction, J. Microsc. Vol. 159 (1990), pp.335-342.
DOI: 10.1111/j.1365-2818.1990.tb03038.x
Google Scholar