A Microscopic Mechanics Model for Thermal Fatigue Crack Growth

Article Preview

Abstract:

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 274-276)

Pages:

205-210

Citation:

Online since:

October 2004

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Granacher, A. Klenk, M. Tramer: Int. J. Pres. Ves. Piping Vol. 78 (2001), pp.909-920.

Google Scholar

[2] N.J. Marchand, R.M. Pelloux, B. Hschner: Fatigue Fract. Eng. Mater. Struct. 10 (1) (1987), pp.59-74.

Google Scholar

[3] V.A. Petrov, V.P. Ulin, B.T. Timofeev: Int. J. Pres. Ves. & Piping. Vol. 70 (1997), pp.85-90.

Google Scholar

[4] R. Scholz, R. Mueller: J. Nucl. Mater: Vol. 258-263 (1998), pp.1600-1605.

Google Scholar

[5] J. Granacher, A. Klenk, M. Tramer: Int. J. Pres. Ves. & Piping Vol. 78 (2001), pp.909-920.

Google Scholar

[6] T. Beck, K. -H. Lang, G. Pitz: Mechanics of time-dependent Materials Vol. 6 (2002), pp.271-282.

Google Scholar

[7] Klaus Rau, Tilmann Beck, Detlef Löhe: Mater. Sci. Eng. A345 (2003), pp.309-318.

Google Scholar

[8] Jun Ma and Yi Sun: Mater. Sci. Eng. A355 (2003), pp.14-17.

Google Scholar

[9] L.E. Svensson and G.L. Dunlop: Int. Metall. Rev. Vol. 24 (1981), p.109.

Google Scholar

[10] S.J. Chang, S.M. Ohr, J. Appl. Phys. Vol. 52 (1981), pp.7174-7181.

Google Scholar

[11] N.I. Muskhelishvili: Singular Integral Equations (Noordhoff, Groningen, 1953).

Google Scholar

[12] D.A. Miller, C.D. Hamm and J.L. Phillips: Mater. Sci. Eng. Vol. 53 (1982), pp.233-244.

Google Scholar