An Effect of Material Parameters on the Camber Behavior

Article Preview

Abstract:

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 274-276)

Pages:

565-570

Citation:

Online since:

October 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K.J. Weinmann and R.J. Shippell: Sixth North American Metal Working Research Conference Proceeding (May 1978), p.220.

Google Scholar

[2] C. Magnusson and Z. Tan: Proceedings of 16th Biannual IDDRG Congress (May 1990), p.363.

Google Scholar

[3] Y.M. Huang, H. Takizawa, A. Makinouchi and T. Nakagawa: Spring Proceedings on Plastic Working (1989), p.275.

Google Scholar

[4] Y.M. Huang, Y.H. Lu and A. Makinouchi: J. of Mater. Proc. Tech. Vol. 35 (1992), p.129.

Google Scholar

[5] H. Ogawa, A. Makinouchi, H. Takizawa and N. Mori: Advanced Technology of Plasticity Proceedings of Fourth International Conference on Technology of Plasticity (1993), p.1641.

Google Scholar

[6] A. Makinouchi: Proceedings of NUMIFORM'86 Conference (1986), p.327.

Google Scholar

[7] E.M. Dvorkin and K.J. Bathe: Eng. Comput. Vol. 1 (1984), p.77.

Google Scholar

[8] R.M. McMeeking and J.R. Rice: Int. J. Solids Structures Vol. 11 (1975), p.601.

Google Scholar

[9] H.L. Cao and C. Teodosiu: Conference proceedings: Computational Plasticity - fundamentals and applications (1989), p.959.

Google Scholar

[10] Y. Yamada, N. Yoshimura and T. Sakurai: Int. J. of Mech. Sci. Vol. 10 (1968), p.343.

Google Scholar

[11] Santos and A. Makinouchi: Proceedings of Numisheet'93 (1993), p.261.

Google Scholar

[12] Y.M. Huang and D.K. Leu: Computers and Structures Vol. 57 (1996).

Google Scholar

10 0. 15 0. 20 0. 25 0. 30 0. 35 0. 40 Strain Hardening Exponent (n).

Google Scholar

[1] 20.

Google Scholar

[1] 60.

Google Scholar

[2] 00.

Google Scholar

[2] 40 Springback Angle (Ast: degree) (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material : M1 Material : M2 Material : M3 Material : M4.

Google Scholar

10 0. 15 0. 20 0. 25 0. 30 0. 35 0. 40 Strain Hardening Exponent (n).

Google Scholar

44 Camber Height (δ: mm) (a) (b) Fig. 3. (a) The effect of strain hardening exponent on the springback angle with varied blank width and varied blank thickness. (b) The effect of strain hardening exponent on the camber height with varied blank width and varied blank thickness. Material: M1 ; n=0. 25 Material: M1 ; n=0. 35 Material: M1 ; n=0. 15 (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material: M2 ; n=0. 25 Material: M2 ; n=0. 15 Material: M2 ; n=0. 35 Thickness (mm) Relative Position - Y Axis (mm) -15. 0 -10. 0 -5. 0 0. 0 5. 0 10. 0 15. 0.

DOI: 10.1049/el:19990868

Google Scholar

[1] 85.

Google Scholar

[1] 90.

Google Scholar

[1] 95.

Google Scholar

[2] 00.

Google Scholar

[2] 05.

Google Scholar

[2] 10 -15. 0 -10. 0 -5. 0 0. 0 5. 0 10. 0 15. 0.

Google Scholar

[4] 40.

Google Scholar

[4] 80.

Google Scholar

[5] 20.

Google Scholar

[5] 60.

Google Scholar

[6] 00 Material: M3 ; n=0. 25 Material: M3 ; n=0. 35 Material: M3 ; n=0. 15 (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material: M4 ; n=0. 25 Material: M4 ; n=0. 15 Material: M4 ; n=0. 35 Fig. 4. The effect of strain hardening exponent on the thickness distribution of bend axis with varied blank width and varied blank thickness. (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material : M1 Material : M2 Material : M3 Material : M4.

DOI: 10.1016/b978-1-85617-963-8.00025-9

Google Scholar

00 0. 02 0. 04 0. 06 0. 08 0. 10 Friction Coefficient (µ).

Google Scholar

[1] 20.

Google Scholar

[1] 60.

Google Scholar

[2] 00.

Google Scholar

[2] 40 Springback Angle (Ast: degree) (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material : M1 Material : M2 Material : M3 Material : M4.

Google Scholar

00 0. 02 0. 04 0. 06 0. 08 0. 10 Friction Coefficient (µ).

Google Scholar

38 Camber Height (δ: mm) (a) (b) Fig. 5. (a) The effect of friction coefficient on the springback angle with varied blank width and varied blank thickness. (b) The effect of friction coefficient on the camber height with varied blank width and varied blank thickness. Relative Position - Y Axis (mm) Thickness (mm) -15. 0 -10. 0 -5. 0 0. 0 5. 0 10. 0 15. 0.

DOI: 10.1021/acs.chemmater.9b01330.s001

Google Scholar

[1] 85.

Google Scholar

[1] 90.

Google Scholar

[1] 95.

Google Scholar

[2] 00.

Google Scholar

[2] 05.

Google Scholar

[2] 10 -15. 0 -10. 0 -5. 0 0. 0 5. 0 10. 0 15. 0.

Google Scholar

[4] 60.

Google Scholar

[4] 80.

Google Scholar

[5] 00.

Google Scholar

[5] 20.

Google Scholar

[5] 40.

Google Scholar

[5] 60 Material: M1 ; μ =0. 05 Material: M1 ; μ =0. 10 Material: M1 ; μ =0. 01 (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material: M2 ; μ =0. 05 Material: M2 ; μ =0. 01 Material: M2 ; μ =0. 10 Material: M3 ; μ =0. 05 Material: M3 ; μ =0. 10 Material: M3 ; μ =0. 01 (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material: M4 ; μ =0. 05 Material: M4 ; μ =0. 01 Material: M4 ; μ =0. 10 Fig. 6. The effect of friction coefficient on the thickness distribution of bend axis with varied blank width and varied blank thickness. (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material : M1 Material : M2 Material : M3 Material : M4.

DOI: 10.4172/2169-0022.c1.033

Google Scholar

75 1. 00 1. 25 1. 50 1. 75 2. 00 2. 25 Normal Anisotropy (R) -0. 50.

Google Scholar

[1] 00.

Google Scholar

[1] 50.

Google Scholar

[2] 00.

Google Scholar

[2] 50 Springback Angle (Ast: degree) (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material : M1 Material : M2 Material : M3 Material : M4.

Google Scholar

75 1. 00 1. 25 1. 50 1. 75 2. 00 2. 25 Normal Anisotropy (R).

Google Scholar

70 Camber Height (δ: mm) (a) (b) Fig. 7. (a) The effect of normal anisotropy on the springback angle with varied blank width and varied blank thickness. (b) The effect of normal anisotropy on the camber height with varied blank width and varied blank thickness. Material: M1 ; R=1. 5 Material: M1 ; R=2. 0 Material: M1 ; R=1. 0 (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material: M2 ; R=1. 5 Material: M2 ; R=1. 0 Material: M2 ; R=2. 0 Material: M3 ; R=1. 5 Material: M3 ; R=2. 0 Material: M3 ; R=1. 0 Material: M4 ; R=1. 0 Material: M4 ; R=2. 0 Material: M4 ; R=1. 5 (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Relative Position - Y Axis (mm) -15. 0 -10. 0 -5. 0 0. 0 5. 0 10. 0 15. 0.

DOI: 10.3403/30377489

Google Scholar

[4] 60.

Google Scholar

[4] 80.

Google Scholar

[5] 00.

Google Scholar

[5] 20.

Google Scholar

[5] 40.

Google Scholar

[5] 60.

Google Scholar

[5] 80.

Google Scholar

[6] 00.

Google Scholar

[6] 20 Thickness (mm) -15. 0 -10. 0 -5. 0 0. 0 5. 0 10. 0 15. 0.

Google Scholar

[1] 85.

Google Scholar

[1] 90.

Google Scholar

[1] 95.

Google Scholar

[2] 00.

Google Scholar

[2] 05.

Google Scholar

[2] 10.

Google Scholar

[2] 15 Fig. 8. The effect of normal anisotropy on the thickness distribution of bend axis with varied blank width and varied blank thickness.

Google Scholar