[1]
K.J. Weinmann and R.J. Shippell: Sixth North American Metal Working Research Conference Proceeding (May 1978), p.220.
Google Scholar
[2]
C. Magnusson and Z. Tan: Proceedings of 16th Biannual IDDRG Congress (May 1990), p.363.
Google Scholar
[3]
Y.M. Huang, H. Takizawa, A. Makinouchi and T. Nakagawa: Spring Proceedings on Plastic Working (1989), p.275.
Google Scholar
[4]
Y.M. Huang, Y.H. Lu and A. Makinouchi: J. of Mater. Proc. Tech. Vol. 35 (1992), p.129.
Google Scholar
[5]
H. Ogawa, A. Makinouchi, H. Takizawa and N. Mori: Advanced Technology of Plasticity Proceedings of Fourth International Conference on Technology of Plasticity (1993), p.1641.
Google Scholar
[6]
A. Makinouchi: Proceedings of NUMIFORM'86 Conference (1986), p.327.
Google Scholar
[7]
E.M. Dvorkin and K.J. Bathe: Eng. Comput. Vol. 1 (1984), p.77.
Google Scholar
[8]
R.M. McMeeking and J.R. Rice: Int. J. Solids Structures Vol. 11 (1975), p.601.
Google Scholar
[9]
H.L. Cao and C. Teodosiu: Conference proceedings: Computational Plasticity - fundamentals and applications (1989), p.959.
Google Scholar
[10]
Y. Yamada, N. Yoshimura and T. Sakurai: Int. J. of Mech. Sci. Vol. 10 (1968), p.343.
Google Scholar
[11]
Santos and A. Makinouchi: Proceedings of Numisheet'93 (1993), p.261.
Google Scholar
[12]
Y.M. Huang and D.K. Leu: Computers and Structures Vol. 57 (1996).
Google Scholar
10 0. 15 0. 20 0. 25 0. 30 0. 35 0. 40 Strain Hardening Exponent (n).
Google Scholar
[2]
40 Springback Angle (Ast: degree) (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material : M1 Material : M2 Material : M3 Material : M4.
Google Scholar
10 0. 15 0. 20 0. 25 0. 30 0. 35 0. 40 Strain Hardening Exponent (n).
Google Scholar
44 Camber Height (δ: mm) (a) (b) Fig. 3. (a) The effect of strain hardening exponent on the springback angle with varied blank width and varied blank thickness. (b) The effect of strain hardening exponent on the camber height with varied blank width and varied blank thickness. Material: M1 ; n=0. 25 Material: M1 ; n=0. 35 Material: M1 ; n=0. 15 (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material: M2 ; n=0. 25 Material: M2 ; n=0. 15 Material: M2 ; n=0. 35 Thickness (mm) Relative Position - Y Axis (mm) -15. 0 -10. 0 -5. 0 0. 0 5. 0 10. 0 15. 0.
DOI: 10.1049/el:19990868
Google Scholar
[2]
10 -15. 0 -10. 0 -5. 0 0. 0 5. 0 10. 0 15. 0.
Google Scholar
[6]
00 Material: M3 ; n=0. 25 Material: M3 ; n=0. 35 Material: M3 ; n=0. 15 (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material: M4 ; n=0. 25 Material: M4 ; n=0. 15 Material: M4 ; n=0. 35 Fig. 4. The effect of strain hardening exponent on the thickness distribution of bend axis with varied blank width and varied blank thickness. (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material : M1 Material : M2 Material : M3 Material : M4.
DOI: 10.1016/b978-1-85617-963-8.00025-9
Google Scholar
00 0. 02 0. 04 0. 06 0. 08 0. 10 Friction Coefficient (µ).
Google Scholar
[2]
40 Springback Angle (Ast: degree) (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material : M1 Material : M2 Material : M3 Material : M4.
Google Scholar
00 0. 02 0. 04 0. 06 0. 08 0. 10 Friction Coefficient (µ).
Google Scholar
38 Camber Height (δ: mm) (a) (b) Fig. 5. (a) The effect of friction coefficient on the springback angle with varied blank width and varied blank thickness. (b) The effect of friction coefficient on the camber height with varied blank width and varied blank thickness. Relative Position - Y Axis (mm) Thickness (mm) -15. 0 -10. 0 -5. 0 0. 0 5. 0 10. 0 15. 0.
DOI: 10.1021/acs.chemmater.9b01330.s001
Google Scholar
[2]
10 -15. 0 -10. 0 -5. 0 0. 0 5. 0 10. 0 15. 0.
Google Scholar
[5]
60 Material: M1 ; μ =0. 05 Material: M1 ; μ =0. 10 Material: M1 ; μ =0. 01 (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material: M2 ; μ =0. 05 Material: M2 ; μ =0. 01 Material: M2 ; μ =0. 10 Material: M3 ; μ =0. 05 Material: M3 ; μ =0. 10 Material: M3 ; μ =0. 01 (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material: M4 ; μ =0. 05 Material: M4 ; μ =0. 01 Material: M4 ; μ =0. 10 Fig. 6. The effect of friction coefficient on the thickness distribution of bend axis with varied blank width and varied blank thickness. (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material : M1 Material : M2 Material : M3 Material : M4.
DOI: 10.4172/2169-0022.c1.033
Google Scholar
75 1. 00 1. 25 1. 50 1. 75 2. 00 2. 25 Normal Anisotropy (R) -0. 50.
Google Scholar
[2]
50 Springback Angle (Ast: degree) (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material : M1 Material : M2 Material : M3 Material : M4.
Google Scholar
75 1. 00 1. 25 1. 50 1. 75 2. 00 2. 25 Normal Anisotropy (R).
Google Scholar
70 Camber Height (δ: mm) (a) (b) Fig. 7. (a) The effect of normal anisotropy on the springback angle with varied blank width and varied blank thickness. (b) The effect of normal anisotropy on the camber height with varied blank width and varied blank thickness. Material: M1 ; R=1. 5 Material: M1 ; R=2. 0 Material: M1 ; R=1. 0 (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Material: M2 ; R=1. 5 Material: M2 ; R=1. 0 Material: M2 ; R=2. 0 Material: M3 ; R=1. 5 Material: M3 ; R=2. 0 Material: M3 ; R=1. 0 Material: M4 ; R=1. 0 Material: M4 ; R=2. 0 Material: M4 ; R=1. 5 (Rp = 3. 0 ; Rd = 15. 0 ; At = 90o) Relative Position - Y Axis (mm) -15. 0 -10. 0 -5. 0 0. 0 5. 0 10. 0 15. 0.
DOI: 10.3403/30377489
Google Scholar
[6]
20 Thickness (mm) -15. 0 -10. 0 -5. 0 0. 0 5. 0 10. 0 15. 0.
Google Scholar
[2]
15 Fig. 8. The effect of normal anisotropy on the thickness distribution of bend axis with varied blank width and varied blank thickness.
Google Scholar