Application of Singular Point Analytical Element Method in Crack Problem

Article Preview

Abstract:

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 274-276)

Pages:

757-762

Citation:

Online since:

October 2004

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Liebowitz H. and Moyer E.T.: Finite Element Methods in Fracture Mechanics Comput Struct Vol. 31 (1989), p.1.

Google Scholar

[2] Xiao Q.Z., Karihaloo B.L. and Williams F.W.: Application of penalty-equilibrium hybrid stress element method to crack problems Engng Fract Mech Vol. 63 (1999), p.1.

DOI: 10.1016/s0013-7944(99)00015-6

Google Scholar

[3] Kpegba K.W. and Ottavy N.: Stress intensity factors in two-dimensional crack problems by using the superimposed meshed method Engng Fract Mech Vol. 54 (1996), p.113.

DOI: 10.1016/0013-7944(95)00176-x

Google Scholar

[4] He W.J. and Lin Y.: A Three-dimensional formula for determining stress intensity factors in finite element analysis of cracked bodies Engng Fract Mech Vol. 57 (1997), p.409.

DOI: 10.1016/s0013-7944(97)00020-9

Google Scholar

[5] Andraej Seweryn and Krzysztof Molski: Elastic stress singularities and corresponding generalized stress intensity factors for angular corners under various boundary conditions Engng Fract Mech Vol. 55 (1996), p.529.

DOI: 10.1016/s0013-7944(96)00035-5

Google Scholar

[6] Aliabadi M.H.: Boundary element formulations in fracture, A review J. Appl. Mech. Review, Vol. 50 (1997), p.83.

Google Scholar

[7] Elvin N., Christopher L. A faster iterative boundary element method for solving closed crack problems. Engng Fract Mech Vol. 63 (1999), p.631.

DOI: 10.1016/s0013-7944(99)00035-1

Google Scholar

[8] Lu M. and Lee S.B.: Eigenspectra and orders of singularity at a crack tip for a power-law creeping medium Int. J. Fract Vol. 92 (1998), p.55.

Google Scholar

[9] Chueng Y.K., Woo C.W. and Wang Y.H.: The stress intensity factor for a double edge cracked plate by boundary collocation method Int. J. Fract. Vol. 37 (1988), p.217.

DOI: 10.1007/bf00045864

Google Scholar

[10] Xu X.S., Zhong W.X., Zhang H.W. The Saint-Venant problem and principle in elasticity. Int. J. Solids Structures Vol. 34 (1997), p.2815.

DOI: 10.1016/s0020-7683(96)00198-9

Google Scholar

[11] Zhong W.X. and Zhong X.X.: Method of separation of variables and Hamiltonian system. Numerical Methods for PDE Vol. 9 (1993), p.63.

Google Scholar

[12] Zhong W.X., Lin J.H. and Qiu C.H.: Computational structural mechanics and optimal control-the simulation of substructural chain theory to linear quadratic optimal control problems Intern J of Num Meth in Eng 1Vol. 33 (1992), p.197.

DOI: 10.1002/nme.1620330113

Google Scholar

[13] Zhong W.X.: Plane elasticity in sectorial domain and Hamiltonian system Appl. Math. and Mech. Vol. 15 (1994), p.1113.

DOI: 10.1007/bf02451982

Google Scholar

[14] David Broek: Elementary engineering fracture mechanics. (Sijthoff & Noordhoff International Publishers B.V., Alphen aanden Rijn, The Netherlands, 1978).

Google Scholar