[1]
Liebowitz H. and Moyer E.T.: Finite Element Methods in Fracture Mechanics Comput Struct Vol. 31 (1989), p.1.
Google Scholar
[2]
Xiao Q.Z., Karihaloo B.L. and Williams F.W.: Application of penalty-equilibrium hybrid stress element method to crack problems Engng Fract Mech Vol. 63 (1999), p.1.
DOI: 10.1016/s0013-7944(99)00015-6
Google Scholar
[3]
Kpegba K.W. and Ottavy N.: Stress intensity factors in two-dimensional crack problems by using the superimposed meshed method Engng Fract Mech Vol. 54 (1996), p.113.
DOI: 10.1016/0013-7944(95)00176-x
Google Scholar
[4]
He W.J. and Lin Y.: A Three-dimensional formula for determining stress intensity factors in finite element analysis of cracked bodies Engng Fract Mech Vol. 57 (1997), p.409.
DOI: 10.1016/s0013-7944(97)00020-9
Google Scholar
[5]
Andraej Seweryn and Krzysztof Molski: Elastic stress singularities and corresponding generalized stress intensity factors for angular corners under various boundary conditions Engng Fract Mech Vol. 55 (1996), p.529.
DOI: 10.1016/s0013-7944(96)00035-5
Google Scholar
[6]
Aliabadi M.H.: Boundary element formulations in fracture, A review J. Appl. Mech. Review, Vol. 50 (1997), p.83.
Google Scholar
[7]
Elvin N., Christopher L. A faster iterative boundary element method for solving closed crack problems. Engng Fract Mech Vol. 63 (1999), p.631.
DOI: 10.1016/s0013-7944(99)00035-1
Google Scholar
[8]
Lu M. and Lee S.B.: Eigenspectra and orders of singularity at a crack tip for a power-law creeping medium Int. J. Fract Vol. 92 (1998), p.55.
Google Scholar
[9]
Chueng Y.K., Woo C.W. and Wang Y.H.: The stress intensity factor for a double edge cracked plate by boundary collocation method Int. J. Fract. Vol. 37 (1988), p.217.
DOI: 10.1007/bf00045864
Google Scholar
[10]
Xu X.S., Zhong W.X., Zhang H.W. The Saint-Venant problem and principle in elasticity. Int. J. Solids Structures Vol. 34 (1997), p.2815.
DOI: 10.1016/s0020-7683(96)00198-9
Google Scholar
[11]
Zhong W.X. and Zhong X.X.: Method of separation of variables and Hamiltonian system. Numerical Methods for PDE Vol. 9 (1993), p.63.
Google Scholar
[12]
Zhong W.X., Lin J.H. and Qiu C.H.: Computational structural mechanics and optimal control-the simulation of substructural chain theory to linear quadratic optimal control problems Intern J of Num Meth in Eng 1Vol. 33 (1992), p.197.
DOI: 10.1002/nme.1620330113
Google Scholar
[13]
Zhong W.X.: Plane elasticity in sectorial domain and Hamiltonian system Appl. Math. and Mech. Vol. 15 (1994), p.1113.
DOI: 10.1007/bf02451982
Google Scholar
[14]
David Broek: Elementary engineering fracture mechanics. (Sijthoff & Noordhoff International Publishers B.V., Alphen aanden Rijn, The Netherlands, 1978).
Google Scholar