Semi-Twisted Product of Constant Curvature

Article Preview

Abstract:

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 277-279)

Pages:

753-756

Citation:

Online since:

January 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Besse: Einstein Manifold (Springer-Verlag, Berlin, 1987).

Google Scholar

[2] B. O'Neill: Semi-Riemannian Geometry (Academic Press, New York, 1981).

Google Scholar

[3] B. O'Neill and R.L. Bishop: Manifolds of Negative Curvature. Trans. Amer. Soc. 149 (1969), pp.1-49.

Google Scholar

[4] B.H. Kim: Warped Products with Critical Riemannian Metric. Proc. Japan Acad. 71 (1995), pp.117-118.

Google Scholar

[5] B.Y. Chen: Totally Umbilical Submanifolds. Soochow J. Math. 5 (1979), pp.9-37.

Google Scholar

[6] E.Y. Pak: Riemannian Geometry (Daewoo, 1987).

Google Scholar

[7] H. Reckziegel and R. Ponge: Twisted Products in Pseudo-Riemannian Geometry. Geom. Dedicata 48 (1993), pp.15-25.

DOI: 10.1007/bf01265674

Google Scholar

[8] R.J. Crittenden and R.L. Bishop: Geometry of Manifolds (Academic Press, New York, 1964).

Google Scholar

[9] Y. Machida and H. Sato: Twisted Spaces for Real Four-dimensional Lorentzian Manifolds. Nagoya Math. J. 134 (1994), pp.107-135.

DOI: 10.1017/s0027763000004888

Google Scholar