Semi-Twisted Product of Constant Curvature

Abstract:

Article Preview

Info:

Periodical:

Key Engineering Materials (Volumes 277-279)

Edited by:

Kwang Hwa Chung, Yong Hyeon Shin, Sue-Nie Park, Hyun Sook Cho, Soon-Ae Yoo, Byung Joo Min, Hyo-Suk Lim and Kyung Hwa Yoo

Pages:

753-756

Citation:

M. S. Kim et al., "Semi-Twisted Product of Constant Curvature", Key Engineering Materials, Vols. 277-279, pp. 753-756, 2005

Online since:

January 2005

Export:

Price:

$38.00

[1] A. Besse: Einstein Manifold (Springer-Verlag, Berlin, 1987).

[2] B. O'Neill: Semi-Riemannian Geometry (Academic Press, New York, 1981).

[3] B. O'Neill and R.L. Bishop: Manifolds of Negative Curvature. Trans. Amer. Soc. 149 (1969), pp.1-49.

[4] B.H. Kim: Warped Products with Critical Riemannian Metric. Proc. Japan Acad. 71 (1995), pp.117-118.

[5] B.Y. Chen: Totally Umbilical Submanifolds. Soochow J. Math. 5 (1979), pp.9-37.

[6] E.Y. Pak: Riemannian Geometry (Daewoo, 1987).

[7] H. Reckziegel and R. Ponge: Twisted Products in Pseudo-Riemannian Geometry. Geom. Dedicata 48 (1993), pp.15-25.

DOI: https://doi.org/10.1007/bf01265674

[8] R.J. Crittenden and R.L. Bishop: Geometry of Manifolds (Academic Press, New York, 1964).

[9] Y. Machida and H. Sato: Twisted Spaces for Real Four-dimensional Lorentzian Manifolds. Nagoya Math. J. 134 (1994), pp.107-135.

DOI: https://doi.org/10.1017/s0027763000004888

Fetching data from Crossref.
This may take some time to load.