The Structure and Hardness of rf-Reactive Sputtered Ti-Zr-N Films

Article Preview

Abstract:

Ternary Ti-Zr-N thin films were synthesized by rf-reactive sputtering in Ar–N2 plasma. Effects of the substrate temperature in the sputtering process on the microstructures of Ti-Zr-N thin films were investigated using SEM, TEM, XRD and AES techniques. The hardness of the Ti-Zr-N film increases as the substrate temperature in reactive sputtering increases. The reactive sputtered Ti-Zr-N film is characterized as polycrystalline in nature with two dominant orientations of (111) and (200). A substrate temperature of 300°C is suggested for getting a densely packed film structure with the highest hardness.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Pages:

1449-1452

Citation:

Online since:

February 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Knotek and A. Barimassi: Thin Solid Films Vol. 174 (1989), p.51.

Google Scholar

[2] L. Rebouta, F. Vaz, M. Andritschky and M. F. daSilva: Surf. Coat. Technol. Vol. 76 (1995), p.70.

Google Scholar

[3] I. Sakamoto, S. Maruno and P. Jim: Thin Solid Films Vol. 228 (1993), p.169.

Google Scholar

[4] O. Knotek, M. Bohmer and T. Leyendecker: J. Vac. Sci. Technol. Vol. A4 (1986), p.2695.

Google Scholar

[5] D. -Y. Wang, C. -L. Chang, C. -H. Hsu and H. -N. Lin: Surf. Coat. Technol., Vol. 130 (2000), p.64.

Google Scholar

[6] H. Loffler, H.P. Lorenz and D. Schack: Surf. Coat. Technol. Vol. 54 -55 (1992), p.148.

Google Scholar

[7] L. A. Donohue, J. Cawley and J. S. Brooks: Surf. Coat. Technol. Vol. 72 (1995), p.128.

Google Scholar

[8] O. Knotek, H. Loffler and G. Kramer: Surf. Coat. Technol. Vol. 54 -55 (1992), p.241.

Google Scholar

[9] J. Musil, I. Stepanek, J. Musil, Jr. et al: Mater. Sci. Eng. A Vol. 163 (1993), p.211.

Google Scholar

[10] I. Grimberg, V. Zhitomirsky, R. Boxman, et al.: Surf. Coat. Technol. Vol. 108-109 (1998), p.154.

Google Scholar

[11] Z. Tonghe, W. Yuguang, Z. Zhiyong and D. Zhiwei: Surf. Coat. Technol. Vol. 131 (2000), p.326.

Google Scholar

[12] P. Hones, C. Akis, P. E. Shmid, F. Levy and O. R. Shojael: Appl. Phys. Lett. Vol. 76 (2000) p.326.

Google Scholar

[13] D.Y. Wang, C.L. Chang, C.H. Hsu, H.L. Lin: Surf. Coat. Technol. Vol. 130 (2000), p.64.

Google Scholar

[14] T. B. Ryer: Electron Diffraction, Bulter and Tanner, London, 1970, p.75.

Google Scholar

[15] L. Rebouta, F. Vaz, M. Andritschky, M. F. da Silva: Surf. Coat. Technol. Vol. 76-77 (1995), p.70.

Google Scholar

[16] C. P. Constable, J. Yarwood and W. -D. Munz: Surf. Coat. Technol. Vol. 116-119 (1999), p.155.

Google Scholar

[17] B. D. Cullity: Elements of X-Ray Diffraction, Addison-Wesley, Reading, MA, 1978. Fig. 5. Variation of the hardness of the Ti-Zr-N film with the substrate temperature.

Google Scholar