Determination of Sintering Temperature of Nanocomposite WC-Co

Abstract:

Article Preview

The need for WC-Co with improved properties, particularly increased hardness and strength combined with increased ductility and toughness, has focused attention on the development of grades with finer and finer-grained powders and cemented carbides. The aim of this study is to determine the sintering temperature of nanocomposite WC-6Co (wt.%) sample by using an optical microscope under high temperature and a DSC / TG apparatus. The WC-Co sample was prepared from nanocomposite powder by hot-press-sintering at the determined sintering temperature. The phase structure of the powder and sintered samples was investigated. The SEM imaging was performed on fracture surfaces of sintered samples. The density and the HRA of sintered samples were also measured.

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Edited by:

Wei Pan, Jianghong Gong, Chang-Chun Ge and Jing-Feng Li

Pages:

1485-1488

Citation:

G. Q. Shao et al., "Determination of Sintering Temperature of Nanocomposite WC-Co", Key Engineering Materials, Vols. 280-283, pp. 1485-1488, 2005

Online since:

February 2007

Export:

Price:

$38.00

[1] S. Kim, S. -H. Han, J. -K. Park and H. -E. Kim: Scripta Mater. Vol. 48 (2003), p.635.

[2] H.R. Lee, D.J. Kim, N.M. Hwang and D. -Y. Kim: J. Am. Ceram. Soc. Vol. 86 (2003), p.152.

[3] J. Qu, L. Riester, A.J. Shih, R. Scattergood, et al.: Mater. Sci. Eng. A Vol. 334 (2003), p.125.

[4] S.I. Cha, S.H. Hong and B.K. Kim: Mater. Sci. Eng. A Vol. 351 (2003) 31-38.

[5] A. Czyzniewski: Thin Solid Films Vol. 433 (2003), p.180.

[6] Z.G. Ban and L.L. Shaw: J. Thermal Spray Technol. Vol. 12 (2003), p.112.

[7] V. Chabretou, C.H. Allibert and J.M. Missiaen: J. Mater. Sci. Vol. 38 (2003), p.2581.

[8] K.J.A. Brookes: Int'l. J. Ref. Metals & Hard Mater. Vol. 21 (2003), p.81.

[9] G.Q. Shao, X.L. Duan, J.R. Xie, et al.: Reviews on Adv. Mater. Sci. Vol. 5 (2003), p.281.

[10] G.Q. Shao, J.R. Xie, X.L. Duan, et al.: Mater. Sci. Technol. (in Chinese) Vol. 11 (2003), p.340.

[11] G. Gille, B. Szesny, K. Dreyer, et al.: Int'l. J. Ref. Metals & Hard Mater. Vol. 20 (2002), p.3.

[12] A. Sampath, J.J. Stiglich, T.S. Sudarshan, et al.: Powder Metall. Vol. 45 (2002), p.25.

[13] Z.G. Ban and L.L. Shaw: J. Mater. Sci. Vol. 37 (2002), p.37.

[14] G.Q. Shao, X.L. Duan, J.R. Xie, et al.: J. Chin. Ceram. Soc. (in Chinese) Vol. 30 (2002), p.40.

[15] C. H. Allibert: Int'l. J. Ref. Metals & Hard Mater. Vol. 19 (2001), p.53.

[16] Y.C. Zhu, C.X. Ding, K. Yukimura, T.D. Xiao and P.R. Strutt: Ceram. Int'l. Vol. 27 (2001), p.669.

[17] M.S. El-Eskandarany, A.A. Mahday, H.A. Ahmed and A.H. Am. J. Alloys & Compounds Vol. 312 (2000), p.315.

[18] H. Moriguchi, K. Tsuduki and A. Ikegaya: Powder Metall. Vol. 43 (2000), p.17.

[19] G.Q. Shao, B.L. Wu, X.L. Duan, et al.: in N.P. Bansal and J.P. Singh eds. Innovative Processing / Synthesis: Ceramics, Glasses, Composites IV (The American Ceramic Society, Ohio, USA 2000). p.375.

[20] G.Q. Shao, X.L. Duan, B.L. Wu, et al.: in J.P. Singh, N.P. Bansal and E. Ustundag eds. Advances in Ceramic Matrix Composites VI (The American Ceramic Society, Ohio, USA 2000). p.207.

[21] G.Q. Shao, X.L. Duan, J.R. Xie, et al.: Chinese Invention Patent ZL 99 1 16597. 7, Aug. 13, (1999).

[22] G.Q. Shao, B.L. Wu, X.L. Duan, et al.: in E. Ustundag and G. Fishman eds. Ceramic Engineering & Science Proceedings-23rd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A (The American Ceramic Society, Ohio, USA 1999). p.45.

[23] G.Q. Shao, B.L. Wu, M.K. Wei, et al.: Acta Metall. Sinica (in Chinese) Vol. 35 (1999), p.144.

Fetching data from Crossref.
This may take some time to load.