Novel Low Thermal Conductivity Ceramic Materials for Thermal Barrier Coatings

Article Preview

Abstract:

The increase of the efficiency for gas turbines leads to the increasing combustion-chambertemperatures. Rapid degradation of the conventional yttria-stabilized zirconia coatings does not fulfill therequirements at these temperatures for a reliable thermal barrier coatings (TBCs) due to the phasetransformation of zirconia and the sintering behaviour. Therefore, it is very important to develop novelceramic materials for TBCs with low thermal conductivity and long-term stability at high temperatures.In this paper, the developments of potential novel ceramic materials for TBCs with low thermalconductivity are reviewed.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Pages:

1497-1500

Citation:

Online since:

February 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R.A. Miller: Surface and Coatings Technology Vol. 30 (1987), p.1.

Google Scholar

[2] N.P. Padture, M. Gell and E.H. Jordan: Science Vol. 296 (2002), p.280.

Google Scholar

[3] D.J. Wortman, B.A. Nagaraj, and E.C. Duderstadt: Mat. Sci. Eng. A Vol. 121 (1989), p.433.

Google Scholar

[4] T. Cosack and B. Kopperger: Mat. -wiss. u. Werkstofftech Vol. 32 (2001), p.678.

Google Scholar

[5] U. Bast and E. Schumann: Ceramic Engineering and Science Proceedings Vol. 23 (2002), p.525.

Google Scholar

[6] Zh.X. Ding: China Surface Engineering Vol. 12 (1999), p.31.

Google Scholar

[7] H. Ibegazene, S. Alperine and C. Diot: Journal of Materials Science Vol. 30 (1995), p.938.

Google Scholar

[8] R.L. Jones, R.F. Reidy and D. Mess: Surface and Coatings Technology Vol. 82 (1996), p.70.

Google Scholar

[9] J.R. Nicholls, K.J. Lawson, A. Johnstone and D.S. Rickerby: Surface and Coatings Technology Vol. 151-152 (2002), p.383.

DOI: 10.1016/s0257-8972(01)01651-6

Google Scholar

[10] G.W. Schäfer and R. Gadow: Ceramic Engineering and Science Proceedings Vol. 20 (1999), p.291.

Google Scholar

[11] C.J. Friedrich, R. Gadow and M.H. Lischka: Ceramic Engineering and Science Proceedings Vol. 22 (2001), p.375.

Google Scholar

[12] R. Gadow and M. Lischka: Surface and Coatings Technology Vol. 151-152 (2002), p.392.

Google Scholar

[13] N.P. Padture and P.G. Klemens: J. Am. Ceram. Soc. Vol. 80 (1997), p.1018.

Google Scholar

[14] O. Sudre, J. Cheung, D. Marshall, P. Morgan and C.G. Levi: Ceramic Engineering and Science Proceedings Vol. 22 (2001), p.367.

Google Scholar

[15] M. Dietrich, R. Vaβen and D. Stőver: Ceramic Engineering and Science Proceedings Vol. 24 (2003), p.637.

Google Scholar

[16] M.J. Maloney: Thermal barrier coating systems and materials (U.S. Patent No. 6117569, 2000).

Google Scholar

[17] R. Vassen, X. Cao, F. Tietz, D. Basu and D. Stőver: J. Am. Ceram. Soc. Vol. 83 (2000), pp. (2023).

Google Scholar

[18] B. Saruhan, K. Fritscher and U. Schulz: Ceramic Engineering and Science Proceedings Vol. 24 (2003), p.491.

Google Scholar

[19] H. Lehmann, D. Pitzer, G. Pracht, R. Vassen and D. Stőver: J. Am. Ceram. Soc. Vol. 86 (2003), p.1338.

Google Scholar

[20] M.J. Maloney: Thermal barrier coating systems and materials (U.S. Patent No. 6284323, 2001).

Google Scholar

[21] G. Suresh, G. Seenivasan, M.V. Krishnaiah and P.S. Murti: J. Nucl. Mater. Vol. 249 (1997), p.259.

Google Scholar

[22] J. Wu, N.P. Padture, P.G. Klemens, M. Gell, E. García, P. Miranzo and M.I. Osendi: J. Mater. Res. Vol. 17 (2002), p.3193.

DOI: 10.1557/jmr.2002.0462

Google Scholar

[23] J. Wu, X. Wei, N.P. Padture, P.G. Klemens, M. Gell, E. García, P. Miranzo and M.I. Osendi: J. Am. Ceram. Soc. Vol. 85 (2002), p.3031.

Google Scholar