The Brazilian Reliability Test and Micromechanical Modelling for Channelled Cylinders of Multiphased Porous Ceramics

Article Preview

Abstract:

Channelled hollow ceramic cylinders have been sliced into discs of equal thickness and submitted to an adapted diametral compression, or brazilian, test such as to evaluate their reliability. The mean Weibull modulus, of m » 18, is representative of a rather good homogeneity of the ceramic material. The shapes of the distributions reveal a probable multimodality. This is analyzed in superimposing possible unimodal distributions of given characteristic value, Weibull modulus and number of items, and comparing to the experimental plot. Iterative modifications are made until a convincing superposition is attained. Complementary numerical simulations on “thermomechanically equivalent microstructures” have been created on the computer observing actual stereological data. The micro-mechanical model accounts for cracking of grain interfaces until specimen separation. Weibull plots for model structures under pore pressure suggest multimodal distributions with moduli ranging as in the measurements. The larger scatter at higher rupture pressures may indicate a varying degree of quasi-brittleness.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Pages:

1731-1738

Citation:

Online since:

February 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Weibull: J. Appl. Mech. (1951), p.293.

Google Scholar

[2] E. J. Gumbel: Statistics of extremes, Columbia University Press, (1957).

Google Scholar

[3] S. B. Batdorf: J Appl Mech. Vol. 41 (1974), p.459.

Google Scholar

[4] J. Lamon: J. Am. Ceram. Soc. Vol. 73 (1990), p.2204.

Google Scholar

[5] K. Trustrum and A de S. Jalayatika: J. Mater. Sci. Vol. 14 (1979), p.1080.

Google Scholar

[6] A de S. Jalayatika, Fracture of Engineering Brittle Materials, Applied Science, London, (1979).

Google Scholar

[7] A. Khalili and K. Kromp: J. Mater. Sci. Vol. 26 (1991) , p.6741.

Google Scholar

[8] J.H. Gong and J.Q. Wang, Key Eng. Mater. Vol. 224-226 (2002) p.779.

Google Scholar

[9] J. Sung and P.S. Nicholson: J. Am. Ceram. Soc. Vol. 73 (1990), p.639.

Google Scholar

[10] J. Sung and P.S. Nicholson: J. Am. Ceram. Soc., 73 (5), (1990), p.1318.

Google Scholar

[11] A. Charif and F. Osterstock: Second Euro-Ceramics Vol. 2 (1991), p.969.

Google Scholar

[12] A. Charif and F. Osterstock: Mat. Sci. Eng. Vol. B11 (1992), p.299.

Google Scholar

[13] F. Osterstock and A. Charif: Trans Tech Publications, 1-2, (1994), p.249.

Google Scholar

[14] I. St. Doltsinis et al., in Final report Euram-MA1E/0072 project, (1991).

Google Scholar

[15] I. St. Doltsinis and R. Dattke: Comput. Methods Appl. Mech. Engng. Vol. 191 (2001), p.29.

Google Scholar

[16] T. Akazawa: International Union of Testing and Research Laboratories for Materials and Structures, Paris, n°. 16, (1953).

Google Scholar

[17] F.L.L. Carneiro and A. Barciellos: International Union of Testing and Research Laboratories for Materials and Structures, Paris, n°. 13, (1953).

Google Scholar

[18] G. Hondros : Aust. J. Appl. Qsci. Vol. 10 (1959), p.243.

Google Scholar

[19] O. Vardar and I. Finnie: Int. J. Fract. Vol. 11 (1975), p.495.

Google Scholar

[20] M.K. Fahad: J. Mater. Sci. Vol. 31 (1996), p.3723.

Google Scholar

[21] R.M. Spriggs, L.A. Brisette and T. Vasilos: Mater. Res. Stand. Vol. 4.

Google Scholar

[5] (1964), p.218.

Google Scholar

[22] F. Tancret, G. Desgardin and F. Osterstock: Phil. Mag. A Vol. 75 (1997), p.503.

Google Scholar

[23] F. Tancret and F. Osterstock: Phil. Mag. Vol. 83 (2003), p.137.

Google Scholar