Effects of SiO2 Substitution on Piezoelectric and Mechanical Properties of PMS-PZT Ternary Piezoelectric Ceramics

Article Preview

Abstract:

The effects of SiO2 additives on microstructure, piezoelectric and mechanical properties were investigated for Pb0.98Sr0.02(Mn1/3Sb2/3)0.05Zro.48Ti0.47O3 (PMS-PZT) ternary system close to the morphotropic phase boundary. Piezoelectric coefficient (d33) and electromechanical coupling factor (Kp) considerably deteriorated with the substitution of SiO2 increased. On the other hand, the mechanical quality factor (Qm) increased, the maximum value was 1800. Fracture strength of 1.0 wt% SiO2 added the specimens reached to 106.54 MPa which was about 1.4 times higher than pure PMS-PZT ceramic. The rapid improvement of fracture strength probably due to the decrease of grain size, pore distribute and the second phase (redundant Si4+ ions) segregating on the grain boundary which enhanced the bond energy of grain boundary. The optimized concentration of SiO2 doped PMS-PZT ceramics was 0.4 wt% for high power application: d33 = 300 PC/N, Kp = 0.51, Qm = 1500, tand = 0.32% and the fracture strength was 88.5MPa.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Pages:

215-218

Citation:

Online since:

February 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. H. Haertling: J. Am. Ceram. Soc Vol. 82(1999), p.797.

Google Scholar

[2] R. B. Atkin and R. M. Fulrath: J. Am. Ceram. Soc Vol. 54(1971), p.265.

Google Scholar

[3] L. X. He, M. Gao, C. E. Li and W. M. Zhu: J. Eur. Ceram. Soc Vol. 21(2001), p.703.

Google Scholar

[4] Y. K. Gao, Y. H. Chen, J. H. Ryu and D. Viehland: Jpn. J. Appl. Phys Vol. 40(2001), p.687.

Google Scholar

[5] S. T. Tashiro and M. Ikehiro: Jpn. J. Appl. Phys Vol. 36(1997), p.3004.

Google Scholar

[6] C. Sakaki, B. L. Newalkar and S. Komarneni: Jpn. J. Appl. Phys Vol. 40(2001), p.6907.

Google Scholar

[7] S. J. Yoon, H. W. Kang and H. J. Lee: J. Am. Ceram. So Vol. 81(1998), p.2473.

Google Scholar

[8] L. T. Li and Y. J. Yao: Ferroelectrics Vol. 28(1980), p.403.

Google Scholar

[9] J. W. Long, H. Y. Chen, and Z. Y. Meng: Mater. Sci. and Eng. B Vol. 99(2003), p.445.

Google Scholar

[10] H. T. Huang and P. Hing: Ferroelectric Vol. 229(1999), p.291.

Google Scholar

[11] J. H. Moon, H. M. Jang and B. D. You: J. Mater. Res Vol. 8(1993), p.3184.

Google Scholar

[12] Q. Tan and D. Viehland: J. Am. Ceram. Soc Vol. 81(1998), p.328.

Google Scholar

[13] B. S. Li, Z. G. Zhu, G. R. Li and Q. R. Yin: Jpn. J. Appl. Phys Vol. 43(2004) in press.

Google Scholar

[14] T. Yamamoto, K. Yamamoto and R Tanaka: Jpn. J. Appl. Phys Vol. 28(1989), p.63.

Google Scholar