Performance of CVD Mullite Coatings on Silicon Nitride under High Temperature High Load Conditions

Article Preview

Abstract:

Previous studies have demonstrated that dense coatings of CVD mullite (3Al2O3×2SiO2) provide excellent oxidation protection for Si3N4 and SiC in a high pressure, steam environment. In this study the mechanical properties of CVD mullite coated silicon nitride materials from different vendors (AS800, NGKSN88, Kyocera SN281) were evaluated following ASTM test procedures. The dynamic fatigue tests werep erformed in ambient air at temperatures of 850 and 1200°C under fast (30 MPa/s) and slow (0.003 MPa/s) load rates. The static fatigue tests were carried out at a constant load of 350 MPa for 1000h at 1200°C. The cyclic fatiguetests at 850°C consisted of a loading ramp from 20 to 400 MPa in 30 seconds followed by unloading ramp from 400 to 20 MPa. A total of 10,000 cycles were applied to the fatigue test specimens before fast fracture tests were conducted at room temperature. The strength test results indicated that CVD mullite coatings showed excellent adhesion during dynamic fatigue tests and exhibited no creep behavior. Minor flexure strength reduction observed at low stressing rate and at high temperatures appeared to be related to Si3N4 properties such as SCG (slow crack growth) susceptibility. During cyclic and static fatigue tests, a glassy silica/aluminosilicate phase was formed due to oxidation. This resulted in localized coating separation and buckling. However, accumulation of this corrosion layer was not critical since the coated specimens showed a flexure strength increase of ~7-9.5%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

457-470

Citation:

Online since:

June 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] (1997), p.197.

Google Scholar

[3] N.S. Jacobson, and K.N. Lee: J. Am. Cer. Soc. Vol. 79 [8] (1996), p.2161.

Google Scholar

[4] K. L. More, P. F. Tortorelli, M. K. Ferber, etc.: J. Am. Ceram. Soc. Vol. 83/1 (2000), p.211.

Google Scholar

[5] J. A. Haynes, K. M. Cooley, D. P. Stinton, R. A. Lowden, and W. Y. Lee: Corrosion-resistant CVD Coatings for Si3N4, pp.355-362 in Ceramic Engineering and Science, Vol. 20 [4]. Proceedings of the 23rd Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B (Cocoa Beach, FL, January 1999). Edited by E. Ustundag and G. Fischman, American Ceramic Society, Westerville, OH, (1999).

DOI: 10.1002/9780470294574.ch41

Google Scholar

[6] J. A. Haynes, M. J. Lance, K. M. Cooley, M. K. Ferber, R. A. Lowden, and D. P. Stinton: J. Am. Ceram. Soc. Vol. 83 [3] (2000), p.657.

Google Scholar

[7] A. A. Wereszczak, K. Breder, M.K. Ferber: J. Amer. Cer. Soc. Vol. 76 [11] (1993), p.2919.

Google Scholar

[8] N. R. Osborne, G. A. Graves, M. K. Ferber: J. Eng. Gas Turbine & Power-ASME Transactions Vol. 119 [2], p.273.

Google Scholar

[9] A. A. Wereszczak, T. P. Kirkland, K. Breder, M. K. Ferber, P. Khandel: Mat. Sci. & Eng. A Vol. 191 [1-2] (1995), p.257.

Google Scholar

[10] Nat. Bur. Stand. (US) Monogr. Vol. 25 (1964), p.33.

Google Scholar

[11] D. Doppalapudi, S. N. Basu, and V. K. Sarin, Structural Evolution of Mullite Coatings on Silicon-Based Ceramics, pp.664-669 in CVD XIII, Proceedings of the Electrochemical Society Meeting (Los Angeles, CA, May 1996), Vol. 96-5. Edited by T. M. Besmann, M. D. Allendorf, McD. Robinson, and R. K. Ulrich. Electrochemical Society, Pennington, NJ, (1996).

Google Scholar

[12] D. Doppalapudi, and S. N. Basu: Mat. Sci. & Eng. Vol. A231 (1997), p.48.

Google Scholar

[13] M. L. Auger, and V. K. Sarin: Surface and Coatings Technology, Vol. 95 (1997), p.

Google Scholar

[46] [14] S. N. Basu, P. Hou, and V. K. Sarin: Int. J. Refractory Met. & Hard Mater. Vol. 16 (1998) p.343.

Google Scholar

[15] R. P. Mulpuri, and V. K. Sarin: J. Mater. Res. Vol. 11 [6] (1996), p.1315.

Google Scholar

[16] V. J. Tennery, K. Breder, M. K. Ferber, M. G. Jenkins: J. Amer. Cer. Soc. Vol. 83 [5] (2000), p.1177.

Google Scholar

[17] C. K. J. Lin, M. G. Jenkins, M. K. Ferber: J. Eur. Cer. Soc. Vol. 12 [1] (1993), p.3.

Google Scholar

[18] M. G. Jenkins, M. K. Ferber, C. K. J. Lin: J. Amer. Cer. Soc. Vol. 76 [3] (1993), p.788.

Google Scholar

[19] A. A. Wereszczak, M. K. Ferber, T. P. Kirkland, K. L. More, etc.: J. Amer. Cer. Soc. Vol. 78 [8] (1995), p.2129.

Google Scholar

[20] M. G. Jenkins, E. Lara-Curzio, M. K. Ferber, J. A. Salem: J. Non-Cryst. Solids Vol. 177 (1994), p.54.

Google Scholar

[21] A. A. Wereszczak, M. K. Ferber, T. P. Kirkland, A. S. Barnes, etc.: J. Eur. Cer. Soc. Vol. 19 [2] (1999), p.227.

Google Scholar

[22] A. A. Wereszczak, T. P. Kirkland, M. K. Ferber, T. R. Watkins, R. L. Yeckley: J. Mat. Sci. Vol. 33 [8] (1998), p. (2053).

Google Scholar

[23] A. A. Wereszczak, T. P. Kirkland, M. K. Ferber: J. Mat. Sci. Vol. 31 [24] (1996), p.6541.

Google Scholar

[24] A. A. Wereszczak, M. K. Ferber, T. P. Kirkland, C. K. J. Lin: J. Eng. for Gas Turbines and Power - ASME Transactions Vol. 118 [2] (1996), p.251.

Google Scholar

[25] M. K. Ferber, M. G. Jenkins, T. A. Nolan, R. L. Yeckley: J. Amer. Cer. Soc. Vol. 77.

Google Scholar

[3] (1994), p.657.

Google Scholar

[26] C. K. J. Lin, M. G. Jenkins, M. K. Ferber: J. Mat. Sci. Vol. 29 [13] (1994), p.3517.

Google Scholar

[27] M. G. Jenkins, M. K. Ferber, C. K. J. Lin: J. Mat. Sci. Lett. Vol. 12 [24] (1993), p. (1940).

Google Scholar

[28] K. L. More, P. F. Tortorelli, M. K. Ferber, L. R. Walker, etc.: J. Eng. for Gas Turbines and Power - ASME Transactions Vol. 122 [2] (2000), p.212.

Google Scholar

[29] T. E. Easler, R. C. Bradt and R. E. Tressler: J. Amer. Cer. Soc. Vol. 65 (1982), p.317.

Google Scholar

[30] D. S. Wilkinson, J. Amer. Cer. Soc., Vol. 71 (1988) p.562.

Google Scholar

[31] H. T. Lin, M. K. Ferber, and T. P. Kirkland: J. Amer. Cer. Soc., Vol. 86 (2003) p.1176.

Google Scholar