Thermal Stresses in SiC-Si3N4 Cubic-Cell-Divided Multi-Particle-Matrix System

Article Preview

Abstract:

The paper deals with crack formation of thermal stresses in an isotropic multi-particle-matrix system of homogeneously distributed spherical particles in an infinite matrix divided to cubic cells containing a central particle. Originating during a cooling process as a consequence of the difference in thermal expansion coefficients between a matrix and a particle, the thermal stresses are thus investigated within the cubic cell and extreme at the critical particle volume fraction. Resulting from the derived crack formation condition related to an ideal-brittle particle, the critical particle radius considering the critical particle volume fraction is presented along with an application to the thermalstress- strengthened SiC-Si3N4 ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

320-323

Citation:

Online since:

July 2005

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Lofaj, A. Okada and H. Kawamoto: Key Eng. Mater. Vol. 166 (1999), p.95.

Google Scholar

[2] F. Lofaj, A. Okada, Y. Ikeda and H. Kawamoto: Key Eng. Mater. Vol. 171-174 (2000), p.747.

Google Scholar

[3] F. Lofaj, A. Okada, Y. Ikeda, Y. Mizuta, H. Usami and H. Kawamoto: Key Eng. Mater. Vol. 175 (2000), p.321.

Google Scholar

[4] Z. Panek and F. Lofaj: Key Eng. Mater. Vol. 175-176 (2000), p.213.

Google Scholar

[5] M. Šefčiková, K. Zmorayová, P. Diko, H. Babu and D. Cardwell: Acta Metallur. Slov. Vol. 10 (2004), p.889.

Google Scholar

[6] K. Zmorayová, M. Šefčiková, P. Diko, H. Babu and D. Cardwell: Acta Metallur. Slov. Vol. 10 (2004), p.892.

Google Scholar

[7] J. Janovec, A. Guth, A. Výrostková and B. Štefan: Metal. Mater. Vol. 26 (1988), p.714.

Google Scholar

[8] J. Janovec, A. Výrostková and A. Holý: J. Mater. Sci. Vol. 27 (1992), p.6564.

Google Scholar

[9] J. Janovec, A. Výrostková and M. Svoboda: Metall. Mater. Trans. Vol. 25A (1994), p.267.

Google Scholar

[10] J. Janovec, A. Výrostková and A. Holý: Canadian Metall. Quarterly Vol. 33 (1994), p.227.

Google Scholar

[11] A. Výrostková, J. Janovec and M. Svoboda: Metal. Mater. Vol. 33 (1995), p.310.

Google Scholar

[12] L. Ceniga: J. Therm. Stresses Vol. 27 (2004), p.425.

Google Scholar

[13] P. Hvizdoš, F. Lofaj and J. Dusza: Metall. Mater. Vol. 33 (1995), p.473.

Google Scholar

[14] F. Lofaj, A. Okada, H. Usami and H. Kawamoto: Ceramic Trans. Vol. 71 (1996), p.585.

Google Scholar

[15] F. Lofaj, A. Okada, H. Usami and H. Kawamoto: J. Am. Ceram. Soc. Vol. 82 (1999), p.1009.

Google Scholar

[16] P. Šajgalík, M. Hnatko, F. Lofaj, P. Hvizdoš, J. Dusza, P. Warblicher, F. Hofer, R. Riedel, E. Lecomte and M. Hoffmann: J. Europ. Ceram. Soc. Vol. 20 (2000), p.453.

DOI: 10.1016/s0955-2219(99)00176-4

Google Scholar