Intelligence and Metrological Reliability of Measuring Transducers Built in Equipment

Article Preview

Abstract:

It has been proved that artificial intelligence leaned on self-checking is an efficient factor for increasing metrological reliability of measuring instruments. The possibility to create intelligent measuring instruments based upon redundancy of measurement information and informational redundancy of a measuring transducer is presented. Practical examples are provided.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 295-296)

Pages:

619-624

Citation:

Online since:

October 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E.L. Itskovich: Sensors and Systems, 2002, p.50.

Google Scholar

[2] R. Denton: Machine, Plant and System Monitor, 2000, p.62.

Google Scholar

[3] E.V. Shalobaev: Sensors and Systems, 2002, p.8.

Google Scholar

[4] E.I. Tsvetkov: Proc. of the International Conference, Soft Calculations and Measurements SCM-99, St. Petersburg, Russian Federation, 1999, p.42.

Google Scholar

[5] S. Qin: Proc. ISIST 2002, Jinan, China, Vol. 1 (2002), p.75.

Google Scholar

[6] S. Lem: The Sum of Technologies (Mir, Moscow, Russian Federation, 1968).

Google Scholar

[7] Y.V. Tarbeyev, V.N. Ivanov and P.V. Novitskyi: Izmeritelnaya Teknika, 1982, p.12.

Google Scholar

[8] K.V. Sapozhnikova, R. Ye. Taimanov and V.V. Kochugurov: Testing, Checking and Diagnostics of Flexible Production Systems, Nauka, Moscow, Russian Federation, 1988, p.269.

Google Scholar

[9] R.Y. Taimanov and K.V. Sapozhnikova: The Russian Metrological Encyclopedia, Liki Rossii, St. Petersburg, 2001, p.260.

Google Scholar

[10] M.N. Durakbasa, P.H. Osanna and A.N. Agdogan: Proc. XVII IMEKO World Congress, Dubrovnik, Croatia, 2003, p.1786.

Google Scholar

[11] A.P. Lukashev: A.C. USSR No 1055231: Discoveries, Inventions, 1991, No. 5.

Google Scholar

[12] F. Bernhard, D. Boguhn, S. Augustin, H. Mammen and A. Donin: Proc. XVII IMEKO World Congress, Dubrovnik, Croatia, 2003, p.1604.

Google Scholar

[13] R. Taymanov and K. Sapozhnikova: Proc. of the XVII IMEKO World Congress, Dubrovnik, Croatia, 2003, p.1094.

Google Scholar

[14] V.M. Bardila, A.P. Guk and M.V. Konopatskiy: The Abstracts of Papers of the 1st All-Russian Conference, Temperature-2001, NPO Luch, 2001, p.45.

Google Scholar

[15] D. Barberree: Proc. 48th International Instrumentation Symposium ISA, Vol. 420 (2002).

Google Scholar

[16] M. Henry: Control Engineering Europe, 2001, p.32.

Google Scholar

[17] I.I. Druzhinin and V.V. Kochugurov: Izmeritelnaya Teknika, 1988, p.37.

Google Scholar

[18] K.V. Sapozhnikova and R.Y. Taimanov: A.C. USSR No 922498: Discoveries, Inventions, 1982, No. 15.

Google Scholar

[19] K.V. Sapozhnikova and N.I. Slonimskaya: Proc. Seminar, The experience of application of progressive instruments and methods of size measurements, LDNTP, Leningrad, USSR, (1990).

Google Scholar

[20] R.P. Reed: Temperature, Its Measurement and Control in Science and Industry, AIP, NY, Vol. 5 (1982), p.931.

Google Scholar

[21] M. Henry, D. Clarke, N. Archer et al: Control Engineering Practice, 2000, p.487.

Google Scholar

[22] I. Druzhinin, N. Nozdrunov, K. Sapozhnikova and R. Taimanov: Proc. ISIST 2002, Jinan, China, Vol. 3 (2002).

Google Scholar

[23] B.N. Petrov, V.A. Victorov and B.V. Lunkin: The Invariance Principle in Measuring Equipment (Nauka, Moscow 1976).

Google Scholar

[24] MI Recommendation 2021-89, GSI, Metrological Assurance of Flexible Manufacturing Systems, Fundamentals, Gosstandart, Moscow, (1991).

Google Scholar

[25] MI Recommendation 2233-92, GSI, Assurance of Measurement Efficiency in the Control of Technological Processes, Fundamentals, VNIIMS, Moscow, (1992).

Google Scholar

[26] BS 7986: 2001, Data Quality Specification for Industrial Measuring and Control Systems, British Standards Institute, London, (2001).

Google Scholar