A Methodology for Damage Strength Evaluation of a Single Biomimetic Microcapsule

Article Preview

Abstract:

An ultra-precision instrument with concomitant micromanipulation techniques is designed and set up to measure the damage strength of a single biomimetic microcapsule. It can provide the capability of simultaneously measuring the applied force and resultant displacement of a single microcapsule, with maximum force range of 5mN, resolution of 0.1µN and ultimate traveling distance up to 12mm, resolution of 1nm, respectively. By armed high magnification side-view system, it can offer extra and withal valuable information for the supervened analyzing. The bursting force of urea-formaldehyde biomimetic microcapsules of diameter 65µm in glucose solution was measured by this technique. The microcapsule was burst when the deformation reached a value of 56.2% of its diameter and the corresponding resonant force is about 1700µN. The technique provides an effective means to characterize elastic properties of micro biomimetic capsules and compare mechanical strength of microcapsules made of different ingredients.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 297-300)

Pages:

1730-1735

Citation:

Online since:

November 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.N. Petsev: Langmuir Vol. 15 (1999), p.1096.

Google Scholar

[2] K. Kendall, W. Liang and C. Stainton: Proc. Roy. Soc. Lond. A Vol. 454 (1998), p.2529.

Google Scholar

[3] L.A. Taber: Appl. Mech. Rev. Vol. 48 (1995), p.487.

Google Scholar

[4] R.M. Hochmuth, H.P. Ting-Beall, B.B. Beaty, D. Needham and R. Tran-Son-Tay: Biophys. J. Vol. 64 (1993), p.1596.

DOI: 10.1016/s0006-3495(93)81530-3

Google Scholar

[5] Wendy R. Jones, H. Ping Ting-Beall, Greta M. Lee, Scott S. Kelley, Robert M. Hochmuth and Farshid Guilak: J. Biomech. Vol. 32 (1999), pp.119-1800 Unloading Loading E D C B A Force, P (µN) Displacement, w (µm).

Google Scholar

[6] J.Y. Shao and R.M. Hochmuth: Biophys. J. Vol. 77 (1999), p.587.

Google Scholar

[7] W.C. Oliver and G.M. Pharr: J. Mat. Res. Vol. 7 (1992), p.1564.

Google Scholar

[8] L.E. Claes and C.A. Heigele: J. Biomech. Vol. 32 (1999), p.255.

Google Scholar

[9] A. Vinckier and G. Semenza: FEBS Lett. Vol. 430 (1998), p.12.

Google Scholar

[10] G.W. Marshall Jr., M. Balooch, R.R. Gallagher, S.A. Gansky and S.J. Marshall: J. Biomed. Mater. Res. Vol. 54 (2001), p.87.

Google Scholar

[11] M.R. Hofmann: Proceeding of conference of Bios 2001 at San Jose, California, USA (2001), p.20.

Google Scholar

[12] K.D. Jandt: Surf. Sci. Vol. 491 (2001), p.303.

Google Scholar

[13] S. Thalhammer, W.M. Heckl, A. Zink and A.G. Nerlich: J. Archaeolog. Sci. Vol. 28 (2001), p.1061.

Google Scholar

[14] A.B. Mathur, A.M. Collinsworth, W.M. Reichert, W.E. Kraus and G.A. Truskey: J. Biomech. Vol. 34 (2001), p.1545.

Google Scholar

[15] D. Leckband: Annu. Rev. Biophys. Biomolec. Struct. Vol. 29 (2000), p.1.

Google Scholar

[16] P. Bongrand: Rep. Prog. Phys. Vol. 62 (1999), p.921.

Google Scholar

[17] S. Hénon, G. Lenormand, A. Richert and F. Gallet: Biophys. J. Vol. 76 (1999), p.1145.

Google Scholar

[18] F.J. Alenghat, B. Fabry, K.Y. Tsai, W.H. Goldmann and D.E. Ingber: Biochem. Bioph. Res. Co. Vol. 277 (2000), p.93.

Google Scholar

[19] B. Morrison, D.F. Meaney, S.S. Margulies and T.K. Mcintosh: J. Biomech. Eng. -T ASME Vol. 122 (2000), p.224.

Google Scholar

[20] A.J. Putnam, K. Schultz and D.J. Mooney: Am. J. Physiol. Cell Physiol. Vol. 280 (2001), p. C556.

Google Scholar

[21] P.L. Foris, R.W. Brown and P.S. Philips: US patent 4, 087, 376 (1978).

Google Scholar

[22] L. Vu-Quoc and X. Zhang: Proc. R. Soc. A. Vol. 455 (1999), p.4013.

Google Scholar