p.357
p.365
p.371
p.377
p.384
p.390
p.397
p.403
p.409
Fracture and Viscoelastic Behavior of Some Polymers at High Temperatures
Abstract:
Polymers are vital materials in better performance of specific strength. However their application can be restricted by the lower glass transition temperature, Tg. Some polymers have been developed as engineering plastics for the high temperature applications. We examined the high temperature strength of polymers at constant applied stress. The creep rupture and viscoelastic behavior were scrutinized for PC (polycarbonate) and PMMA (polymethyl methacrylate), which were quite different in the molecular structures. The former contains benzene rings and the latter is a single polymer. Tg is 423 K for PC and 378 K for PMMA. The large difference in the creep behavior was observed near Tg. The creep life strongly depends upon the applied stress just below Tg. The creep life is a function of the applied stress as follows. n life t − µ s . The stress exponent, n depends upon the temperature. Mechanical models were applied to evaluate the viscoelastic properties of the polymers at high temperatures. The viscosity rapidly decreased near Tg , regardless of the smaller decrease in the elastic constant. The results would be due to the difference in the molecular structures. The benzene ring could contribute to the higher resistance against the creep deformation through the higher viscosity.
Info:
Periodical:
Pages:
384-389
Citation:
Online since:
November 2005
Authors:
Price:
Сopyright:
© 2005 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: