Densification Behavior of Calcium Phosphates on Spark Plasma Sintering

Article Preview

Abstract:

Ceramics of hydroxyapatite (Ca10(PO4)6(OH)2: HA) and β-tricalcium phosphate (β-Ca3(PO4)2: β-TCP), were prepared by spark plasma sintering (SPS) at the temperatures from 800 °C to 1000 °C for 10 min with a heating rate of 25 °C·min-1. The HA ceramics prepared at 900 °C and 1000 °C showed transparency. On the other hands, transparent β-TCP ceramics was obtained by SPS at 1000 °C. In analysis of the densification behavior during sintering of HA and β-TCP by SPS, dominant sintering mechanism was plastic flow in the early stage of densification. Transparent ceramics should be the most suitable materilas to investigate the interface between human cells and ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 309-311)

Pages:

171-174

Citation:

Online since:

May 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Ioku: J. Soc. Inorg. Mater. Japan Vol. 3 (1996), p.412.

Google Scholar

[2] H. Aoki: Medical Applications of hydroxyapatite (Isiyaku Euro America Inc., Tokyo and St. Louis 1994).

Google Scholar

[3] T. Kanazawa, T. Umegaki, H. Monma and K. Yamashita: J. Soc. Inorg. Mater. No 210 (1987), p.261.

Google Scholar

[4] M. Akao: J. Ceram. Soc. Japan Vol. 20 (1985), p.1096.

Google Scholar

[5] H. Yokozeki, T. Hayashi, T. Nakagawa, H. Kurosawa, K. Shibuya and K. Ioku: J. Mater. Sci. Mater. Med. Vol. 9 (1998), p.381.

Google Scholar

[6] K. Kondo: Phosphorus Letter No. 36 (1999), p.23.

Google Scholar

[7] M. Kinoshita and Y. Hamano: Yogyo-Kyokai-shi Vol. 80 (1972), p.239.

Google Scholar

[8] K. Umeya, T. Nishikawa and H. Nakajima: J. Ceram. Assoc. Japan Vol. 75 (1967), p.301.

Google Scholar

[9] T. Shimohira: Yogyo-Kyokai-shi Vol. 79 (1971), p.132.

Google Scholar

[10] S. Zhang and K. E. Gonsalves: J. Mater. Sci. Mater. Med. Vol. 8 (1997), p.25.

Google Scholar

[11] A. Nakahira, M. Tamai, H. Aritani, S. Nakamura and K. Yamashita: J. Biomed. Mater. Res. Vol. 62 (2002), p.550.

Google Scholar

[12] K. Ioku, M. Yoshimura and S. Somiya: Sintering 87 (Elsevier Applied Science, 1988), p.1308.

Google Scholar

[13] K. Ioku, M. Yoshimura and S. Somiya: J. Ceram. Soc. Japan Vol. 96 (1988), p.109.

Google Scholar

[14] K. Ioku, S. Somiya and M. Yoshimura: J. Mater. Sci. Lett. Vol. 8 (1989), p.1203.

Google Scholar

[15] K. Ioku, M. Yoshimura and S. Somiya: Biomaterials Vol. 11 (1990), p.57.

Google Scholar

[16] N. Kotobuki, K. Ioku, D. Kawagoe, H. Fujimori, S. Goto and H. Ohgushi: Biomaterials Vol. 26 (2005), p.779.

DOI: 10.1016/j.biomaterials.2004.03.020

Google Scholar

[17] M. Jarcho, R. L. Salsbury, M. B. Thomas and R. H. Doemus: J. Mater. Sci. Vol. 14 (1979), p.142.

Google Scholar

[18] M. Akao, H. Aoki and K. Kato: J. Mater. Sci. Vol. 17 (1982), p.343.

Google Scholar

[19] I. Kondoh, N. Tamari and M. Kinoshita: J. Ceram. Soc. Japan Vol. 97 (1989), p.965.

Google Scholar

[20] N. Kotobuki, K. Ioku, D. Kawagoe, D. Nomura, H. Fujimori, S. Goto and H. Ohgushi: Key Engineering Materials Vol. 284-286 (2005)p.663.

DOI: 10.4028/www.scientific.net/kem.284-286.663

Google Scholar