Deposition of Bone-like Apatite Layers on the Surface of Poly(L-Lactic Acid) Using Immobilized Urease

Article Preview

Abstract:

Particulate layers of hydroxyapatite were deposited on the inner and outer surfaces of porous poly(L-lactic acid) monolith, PLLA, by using enzymatically derived ammonia as the precipitant. PLLA specimens were surface-modified with urease and were impregnated with aqueous solutions containing Ca2+, PO4 3- and urea. As ammonia was produced by hydrolysis of urea with the aid of the urease, hydroxyapatite precipitated predominantly on the surfaces of the porous PLLA. In contrast to the conventional biomimetic method or the alternate soaking method, it took shorter time period for hydroxyapatite particles to cover the surfaces of PLLA. The resultant hydroxyapatite was proved to be bone-like apatite because it had low crystallinity, contained carbonate ion in the lattice, and had a calcium-deficient composition.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 309-311)

Pages:

667-670

Citation:

Online since:

May 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. -H. Rhee and J. Tanaka: J. Am. Ceram. Soc. Vol. 81 (1998), p.3029.

Google Scholar

[2] R. Zhang and P. X. Ma: J. Biomed. Mater. Res. Vol. 45 (1999), p.285.

Google Scholar

[3] A. C. A. Wan, E. Khor and G. W. Hastings: J. Biomed. Mater. Res. Vol. 41 (1998), p.541.

Google Scholar

[4] Y. Yokogawa, K. Nishizawa, F. Nagata and T. Kameyama: J. Sol-Gel Sci. Technol. Vol. 21 (2001), p.105.

Google Scholar

[5] A. Takeuchi, C. Ohtsuki, T. Miyazaki, H. Tanaka, M. Yamazaki and M. Tanihara: J. Biomed. Mater. Res. Vol. 65A (2003), p.283.

Google Scholar

[6] Y. Tamada, T. Furuzono, T. Taguchi, A. Kishida and M. Akashi: J. Biomed. Sci. Polymer Edn. Vol. 10 (1999), p.787.

Google Scholar

[7] D. Walsh, T. Furuzono and J. Tanaka: Biomaterials Vol. 22 (2001), p.1205.

Google Scholar

[8] T. Kawai, C. Ohtsuki, M. Kamitakahara, T. Miyazaki, M. Tanihara, Y. Sakaguchi and S. Konagaya: Biomaterials Vol. 25 (2004), p.4529.

DOI: 10.1016/j.biomaterials.2003.11.039

Google Scholar

[9] T. Miyazaki, C. Ohtsuki, Y. Akioka, M. Tanihara, J. Nakao, Y. Sakaguchi and S. Konagaya: J. Mater. Sci.: Mater. Med. Vol. 14 (2003), p.569.

Google Scholar

[10] M. Tanahashi, T. Yao, T. Kokubo, M. Minoda, T. Miyamoto, T. Nakamura and T. Yamamuro: J. Am. Ceram. Soc. Vol. 77 (1994), p.2805.

Google Scholar

[11] T. Taguchi, A. Kishida and M. Akashi: Chem. Lett. (1998), p.711.

Google Scholar

[12] E. Banks, S. Nakajima, L. C. Shapiro, O. Tilevitz, J. R. Alonzo and R. R. Chianelli: Science Vol. 198 (1977), p.1164.

DOI: 10.1126/science.929194

Google Scholar

[13] H. Unuma, M. Hiroya and A. Ito, submitted to J. Mater. Sci.: Mater. Med.

Google Scholar

[14] R. Zhang and P. X. Ma: J. Biomed. Mater. Res. Vol. 44 (1999), p.446.

Google Scholar

[15] I. Rehman and W. Bonfield: J. Mater. Sci.: Mater. Med. Vol. 8 (1997), p.1.

Google Scholar