A Simple Method for Evaluating Flaw Distributions Responsible for Size Effects in the Strength of Small-Scale Silicon Specimens

Article Preview

Abstract:

A simple means of deconvoluting the size distributions of fracture-controlling flaws from Weibull strength plots for small-scale specimens is proposed. The method makes use a power-law distribution function, empirical in form but self-consistent with a conventional two-parameter Weibull probability distribution. Literature data for single-crystal silicon beam specimens covering a range of widths from mm to nm are analyzed according to this procedure. The analysis indicates a reduction in scatter in addition to increase in strength with diminishing specimen size, and quantifies a systematic tightening in flaw distribution associated with refinement in fabrication method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-82

Citation:

Online since:

June 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.J. Wilson, A. Ormeggi and M. Narbuto: J. Appl. Phys. Vol. 79 (1996), p.2386.

Google Scholar

[2] S. Johansson, J. -A. Schweitz, L. Tenerz and J. Tirén: J. Appl. Phys. Vol. 63 (1988), p.4799.

Google Scholar

[3] S. Greek, F. Ericson, S. Johansson and J.A. Schweitz: Thin Solid Films Vol. 292 (1997), p.247.

Google Scholar

[4] T. Tsuchiya, O. Tabata, J. Sakata and Y. Taga: J. Microelectromech. Sys. Vol. 7 (1998), p.106.

Google Scholar

[5] S. Greek, F. Ericson, S. Johansson, M. Furtsch and A. Rump: J. Micromech. Microeng. Vol. 9 (1999) 245.

Google Scholar

[6] J. Kohler, K. Jonsson, S. Greek and L. Stenmark: J. Electrochem. Soc. Vol. 147 (2000), p.4683.

Google Scholar

[7] T. Namazu, Y. Isono and T. Tanaka: J. Microelectromech. Sys. Vol. 9 (2000), p.450.

Google Scholar

[8] W.N. Sharpe, K.M. Jackson, K.J. Hemker and Z.L. Xie: J. Microelectromech. Sys. Vol. 10 (2001), p.317.

Google Scholar

[9] J.N. Ding, Y.G. Meng and S.Z. Wen: J. Mater. Res. Vol. 16 (2001), p.2223.

Google Scholar

[10] J.N. Ding, Y.G. Meng and S.Z. Wen: Mater. Sci. Eng. B Vol. 83 (2001), p.42.

Google Scholar

[11] J.N. Ding, Y.C. Yang, L. Cai and S.Z. Wen: Int. J. Nonlinear Sci. Num. Simulation Vol. 3 (2002), p.499.

Google Scholar

[12] S. Sundararajan and B. Bhushan: Sens. Actuat. A Vol. 101 (2002), p.338.

Google Scholar

[13] O.M. Jadaan, N.N. Nemeth, J. Bagdan and W.N. Sharpe: J. Mater. Sci. Vol. 38 (2003), p.4087.

Google Scholar

[14] K.S. Chen and K.S. Ou: Sens. Actuat. A Vol. 112 (2004), p.163.

Google Scholar

[15] R. Ballarini, R.L. Mullen, Y. Yin, H. Kahn, S. Stemmer and A.H. Heuer: J. Mater. Res. Vol. 12 (1997), p.915.

Google Scholar

[16] K. Duan and X.Z. Hu: presented to China Int. Conf. Nanosci. & Tech. (China NANO 2005), June 9-11, 2005, Beijing, China.

Google Scholar

[17] B.R. Lawn: Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993), Ch. 9.

Google Scholar

[18] X. Hu, B. Cotterell and Y. -W. Mai: Proc. Roy. Soc. Lond. A Vol. 401 (1985), p.251.

Google Scholar

[19] X. Hu, Y. -W. Mai and B. Cotterell: Philos. Mag. Vol. 58 (1988), p.299.

Google Scholar

[20] X. Hu: Mater. Forum Vol. 16 (1992), p.313.

Google Scholar

[21] B.R. Lawn and D.B. Marshall: J. Am. Ceram. Soc. Vol. 62 (1979), p.347.

Google Scholar

[22] Y. -G. Jung, A. Pajares, R. Banerjee and B.R. Lawn, Acta Mater. Vol. 52 (2004), p.3459.

Google Scholar

[23] B.R. Lawn: J. Mater. Res. Vol. 19 (2004), p.22.

Google Scholar

[24] L.B. Freund and S. Suresh: Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, 2004).

Google Scholar