Design of Alumina/Alumina Laminate Composites with Crystalline-Orientated Layers Produced by Electrophoretic Deposition under a High Magnetic Field

Article Preview

Abstract:

Highly crystalline-textured alumina ceramics were fabricated by electrophoretic deposition (EPD) in a strong magnetic field of 12 T. Preferred orientation of the bulk was controlled by changing the direction of the applied electric field E relative to the magnetic field B during the EPD. Average orientation angle of the prepared monoliths as a function of the angle between the vectors E and B, ϕ B-E was estimated from the X-ray diffraction analysis. Alumina/alumina laminar composites with crystalline- oriented layers were also fabricated by alternately changing the ϕ B-E layer by layer during EPD in a magnetic field of 12 T.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

25-32

Citation:

Online since:

July 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Hirao, M. Ohashi, M. E. Brito and S. Kanzaki, J. Am. Ceram. Soc. 78 (1995), 1687.

Google Scholar

[2] T. Takenaka and K. Sakata, Jpn. J. Appl. Phys. 19 (1980), 31.

Google Scholar

[3] Y. Ma and K. J. Bowman, J. Am. Ceram. Soc. 74 (1991), 2941.

Google Scholar

[4] Y. Yoshizawa, M. Toriyama and S. Kanzaki, J. Am. Ceram. Soc. 84 (2001), 1392.

Google Scholar

[5] V. S. Stubican and R. C. Bradt, Annu. Rev. Mater. Sci. 11 (1981), 267.

Google Scholar

[6] S. H. Hong and G. L. Messing, J. Am. Ceram. Soc. 82 (1999), 867.

Google Scholar

[7] E. Suvaci, K. -S. Oh and G. L. Messing, Acta mater. 49 (2001), (2075).

Google Scholar

[8] M. M. Seabaugh, I. H. Kerscht and G. L. Messing, J. Am. Ceram. Soc. 80 (1997), 1181.

Google Scholar

[9] S. Chen, M.G. Mason, H. J. Gysling, G. R. Paz-Pujalt, T. N. Blanton, T. Castro, K. M. Chen, C. P. Fictorie, W. L. Gladfelter, A. Franciosi, P. I. Cohen, and J. F. Evans, J. Vac. Sci. Tech., A 11 (1993), 2419-2429.

DOI: 10.1557/proc-280-173

Google Scholar

[10] T. Sumita, T. Yamaki, S. Yamamoto and A. Miyashita, Appl. Surf. Sci., 200 (2000).

Google Scholar

[11] W. Sugimura, A. Yamazaki, H. Shigetani, J. Tanaka and T. Mitsuhashi, Jpn. J. Appl. Phys., 36 (1997), 7358-7359.

Google Scholar

[12] M. Murakami, Y. Matsumoto, K. Nakajima, T. Makino, Y. Segawa, T. Chikyow, P. Ahmet, M. Kawasaki and H. Koinuma, Appl. Phys. Lett., 78 (2001), 2664-2666.

DOI: 10.1063/1.1365412

Google Scholar

[13] C. K. Ong, and S. J. Wang, Appl. Surf. Sci., 185 (2001), 47-51.

Google Scholar

[14] T. Uchikoshi, T. S. Suzuki, H. Okuyama and Y. Sakka, J. Mater. Res. 18, (2003) 254.

Google Scholar

[15] T. Uchikoshi, T. S. Suzuki, H. Okuyama and Y. Sakka, J. Mater. Sci. 39 (2004), 861.

Google Scholar

[16] T. Uchikoshi, T. S. Suzuki, H. Okuyama and Y. Sakka, J. Mater. Res. 19 (2004), 1487.

Google Scholar

[17] T. Uchikoshi, T. S. Suzuki, F. Tang, H. Okuyama and Y. Sakka, Ceram. Int. 30 (2004), (1975).

Google Scholar

[18] P. de Rango, M. Lees, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Germi and M. Pernet, Nature, 349 (1991), 770.

DOI: 10.1038/349770a0

Google Scholar

[19] T. Uchikoshi, K. Ozawa, B. D. Hatton and Y. Sakka, J. Mater. Res. 16 (2001), 321.

Google Scholar

[20] B. D. Cullity, in Elements of X-ray Diffraction, (Addison Wesley Pub. Co. Inc., London, (1959) p.460.

Google Scholar

[21] ICDD (JCPDS) #10-173 [corundum].

Google Scholar

[22] M. Tahashi, M. Ishihara, K. Sassa and S. Asai, Mater. Trans. 44 (2003), 285.

Google Scholar