3D Particle Assembly in Micro-Scale by Using Electrophoretic Micro-Fabrication Technique

Article Preview

Abstract:

A novel micro-fabrication technique for particle assembly has been performed by an electrophoretic deposition (EPD) method using a local electric field in a colloidal suspension generated by a microelectrode. This unique EPD technique was called a “μ-EPD process”. Monodispersed polystyrene microspheres with diameters of 204, 290, and 320 nm were used in this study. A 50 μm Pt wire embedded into a polytetrafluoroethylene tube and an ITO glass slide were employed as the micro-counter electrode and the substrate, respectively. A slow deposition rate in the μ-EPD process was preferable to form a high quality micro-deposit consisting of a three-dimensional periodic polystyrene array. Under the optimized μ-EPD conditions, three-dimensionally ordered polystyrene particles were deposited in front of the micro-counter electrode. This micro-deposit constructed from polystyrene particles with a close-packed structure showed a characteristic optical absorption peak due to Bragg’s law.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-12

Citation:

Online since:

July 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Y. Xia, B. Gates, Y. Yin and Y. Lu: Adv. Mater. Vol. 12 (2000), p.693.

Google Scholar

[2] Y. Yin, Y. Lu, B. Gates and Y. Xia: J. Am. Chem. Soc. Vol. 123 (2001), p.8718.

Google Scholar

[3] H. Fudouzi, and Y. Xia: Adv. Mater. Vol. 15 (2003), p.892.

Google Scholar

[4] Y. Masuda, T. Itoh and K. Koumoto: Langmuir Vol. 21 (2005), p.4478.

Google Scholar

[5] P. Richetti, J. Prost and P. Barois: J. Phys. Lett. Vol. 45 (1984), p.1137.

Google Scholar

[6] M. Giersig and P. Mulvaney: Langmuir Vol. 9 (1993), p.3408.

Google Scholar

[7] M. Taru, D. A. Saville and I. A. Aksay: Science Vol. 272 (1996), p.706.

Google Scholar

[8] M. Böhmer: Langmuir Vol. 12 (1996), p.5746.

Google Scholar

[9] M. Holgado, F. García-Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C. J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer and C. López: Langmuir Vol. 15 (1999), p.4701.

DOI: 10.1021/la990161k

Google Scholar

[10] Y. Solomentsev, M. Böhmer and J. L. Anderson: Langmuir Vol. 13 (1997), p.6058.

Google Scholar

[11] P. Sarkar, D. De, K. Yamashita, P. S. Nicholson and T. Umegaki: J. Am. Ceram. Soc. Vol. 83 (2000), p.1399.

Google Scholar

[12] A. L. Rogach, N. A. Kotov, D. S. Koktysh, J. W. Ostrander and G. A. Ragoisha: Chem. Mater. Vol. 12 (2000), p.2721.

Google Scholar

[13] R. C. Hayward, D. A. Saville and I. A. Aksay: Nature Vol. 404 (2000), p.56.

Google Scholar

[14] P. Sarkar and P. S. Nicholson: J. Am. Ceram. Soc. Vol. 79 (1996), p. (1987).

Google Scholar

[15] E. Yablonovitch: Physical Review Letters Vol. 58 (1987), p. (2059).

Google Scholar

[16] S. John: Phys. Rev. Lett. Vol. 58 (1987), p.2486.

Google Scholar

[17] A. Richel, N. P. Johnson and D. W. McComb: Appl. Phys. Lett. Vol. 76 (2000), p.1816.

Google Scholar

[18] S. G. Romanov, T. Maka, C. M. S. Torres, M. Müller, R. Zentel, D. Cassagne, J. Manzanares-Martinez and C. Jouanin: Phys. Rev. Vol. E63 (2003) p.056603.

DOI: 10.1103/physreve.63.056603

Google Scholar