The Abrasion Mechanism of Diamond Coated Blades with Ultraviolet-Cured Resins

Abstract:

Article Preview

In recent work, a creative idea has been proposed by applying the rapid prototyping technology to develop a new diamond-coated blade based on ultraviolet-cured resin bond. The new technology features many advantages such as fast processing speed, low environmental pollution, and low energy consuming. This paper makes an investigation on the adherence and abrasion mechanisms of such diamond blades. The experimental plan is well designed for selection of an optimal prescription of the mixture to achieve good mechanical performance and a manufacturing process is proposed to produce ultraviolet-cured resin bonded diamond coated blades. Practical experiments are carried to test the blade performance and to compare with different tools in incising artificial crystal. Furthermore, this paper also observes how the tensile strength and elastic modulus of ultraviolet-cured resin affect the crevasse and quality of machined edge surfaces.

Info:

Periodical:

Key Engineering Materials (Volumes 315-316)

Edited by:

Zhejun Yuan, Xipeng Xu, Dunwen Zuo, Julong Yuan and Yingxue Yao

Pages:

661-665

DOI:

10.4028/www.scientific.net/KEM.315-316.661

Citation:

C.Y. Yao et al., "The Abrasion Mechanism of Diamond Coated Blades with Ultraviolet-Cured Resins ", Key Engineering Materials, Vols. 315-316, pp. 661-665, 2006

Online since:

July 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.