High Temperature Characteristics of Melt Growth Composites and Their Application to Ultra High Efficiency Gas Turbine Components

Abstract:

Article Preview

Much attention has been paid to unidirectionally solidified ceramic composites as a candidate for a high-temperature structural material. We have recently developed eutectic composites, which are named as Melt Growth Composites (MGCs). The binary MGCs (Al2O3/YAG and Al2O3/GAP binary systems) have a novel microstructure, in which continuous networks of single-crystal Al2O3 phases and single-crystal oxide compounds (YAG or GAP) interpenetrate without grain boundaries. Therefore, the MGCs have excellent high-temperature strength characteristics, creep resistance, superior oxidation resistance and thermal stability in an air atmosphere at very high temperatures. Manufacturing processes for the MGCs are being examined under a Japanese national project, scheduled from 2001 - 2005. To achieve higher thermal efficiency for gas turbine systems, a bowed stacking nozzle vane has been fabricated on an experimental basis.

Info:

Periodical:

Key Engineering Materials (Volumes 317-318)

Edited by:

T. Ohji, T. Sekino and K. Niihara

Pages:

473-480

DOI:

10.4028/www.scientific.net/KEM.317-318.473

Citation:

Y. Waku "High Temperature Characteristics of Melt Growth Composites and Their Application to Ultra High Efficiency Gas Turbine Components", Key Engineering Materials, Vols. 317-318, pp. 473-480, 2006

Online since:

August 2006

Authors:

Export:

Price:

$35.00

[1] T. Mah and T.A. Parthasarathy: Ceram. Eng. Sci. Proc. Vol. 11 (1990), p.1617.

[2] T.A. Parthasarathy, T. Mah and L.E. Matson: Ceram. Eng. Soc. Proc. Vol. 11 (1990), p.1628.

[3] T.A. Parthasarathy, Mar, Tai-� and L.E. Matson,: J. Am. Ceram. Sci. Vol. 76 (1993), p.29.

[4] A. Sayir, A. and S. C. Farmer: Acta Mater. Vol. 48 (2000), p.4691.

[5] J. Y. Pastor, P. Poza, J. LLorca, J.I. Pena, R. I. Merino and V. M. Orera: J. Am. Ceram. Sci. Vol 83 (2000), p.2745.

[6] Y. Waku, H. Ohtsubo, N. Nakagawa and Y. Kohtoku: J. Mater. Sci. Vol. 31 (1996), p.4663.

[7] Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu and Y. Kohtoku: Nature Vol. 389 (1997), p.49.

DOI: 10.1038/37937

[8] Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu and Y. Kohtoku: J. Mater. Sci. Vol. 33 (1998), p.1217.

[9] Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu and Y. Kohtoku: J. Mater. Sci. Vol. 33 (1998), p.4943.

DOI: 10.1023/a:1004486303958

[10] Y. Waku, N. Nakagawa, H. Ohtsubo, A. Mitani and K. Shimizu: J. Mater. Sci. Vol. 36 (2001), p.1585.

[11] Y. Waku, S. Sakata, A. Mitani, K. Shimizu: Materials Research Innovations Vol. 5 (2001), p.94.

[12] M. Yoshida, K. Tanaka, T. Kubo, H. Terazone and S. Tsuruzone: Proceedings of the international Gas Turbine & Aeroengine Congress & Exibition (The American Society of Mechanical Engineeers 1998).

[13] M. J. Goulette: Proceeding of the eighth international symposium on superalloys (TMS, Pennsylvania 1996).

[14] Y. Waku, S. Sakata, A. Mitani, K. Shimizu, A. Ohtsuka and M. Hasebe: J. of Mater. Sci. Vol. 37 (2002), p.2975.

[15] J. A. DiCarlo and Y. H. Yun: 9th Cimtec World Forum on New Materials Symposium V - Fig. 6 Microstructure of the Al2O3/GAP binary MGC produced using the plasma sprayed Mo crucible and the new Bridgman-type furnace. Advanced Structural Fiber composites Vol. 22 (1999).

[16] Y. H. Yun and J. A. DiCarlo: Ceram. Eng. Sci. Proc. Vol. 20 (1999), p.259.

[17] R. F. Jr. Krause, W. E. Luecke, J. D. French, B.J. Hockey and S. M. Wiederhorn: " J. Am. Ceram. Soc. Vol. 82 (1999), p.1233.

[18] G. L. Erickson: Proceedings of the Eighth International Symposium on Superalloys, September 22-26, 1996, Pennsylvania, USA, (1996).

[19] Y. Waku, N. Nakagawa, K. Kobayashi, Y. Kinoshita and S. Yokoi: ASME TURBO EXPO 2004 - Power for Land, Sea & Air, 14-17 June 2004, Vienna, Austria.

In order to see related information, you need to Login.