[1]
H. Chazono and H. Kishi, Jpn. J. Appl. Phys. 40 (2001) 5624.
Google Scholar
[2]
A. J. Moulson and J. M. Herbert, �Electroceramics, Properties, Applications, 2nd edition� Jhon Wiley & Sons (2003).
Google Scholar
[3]
B. W. Hakki and P. D. Coleman, IEEE Trans. Microwave Theory Tech. 8 (1960) 381.
Google Scholar
[4]
Y. Kobayashi and M. Katoh, IEEE Trans. Microwave Theory Tech. 33 (1985) 586.
Google Scholar
[5]
D. E. Steinhauer, C. P. Vlahacos, C. Canedy, A. Stanishevsky, J. Melngailis, R. Ramesh, F. C. Wellstood, and Steven M. Anlage, Appl. Phys. Lett. 75 (1999) 3180.
DOI: 10.1063/1.125270
Google Scholar
[6]
D. E. Steinhauer, C. P. Vlahacos, F. C. Wellstood, Steven M. Anlage, C. Canedy, R. Ramesh, A. Stanishevsky and J. Melngailis, Rev. Sci. Instrum. 71 (2000) 2751.
DOI: 10.1063/1.1150687
Google Scholar
[7]
H. Kakemoto, J. Li, S-M. Num, S. Wada and T. Tsurumi, Jpn. J. Appl. Phys. 42 (2001) 6143.
Google Scholar
[8]
F. Okada, �Microwave Engineering�Gakken-sha, Tokyo (1993) [in Japanese].
Google Scholar
[9]
Y. Kato, �Denpa Ku-chu Senro no Kenkyu�Kyoritsu-shuppan, Tokyo (1941) [in Japanese].
Google Scholar
[10]
T. Uno, �Electromagnetic field and antenna analysis using FDTD method�Corona-sha, Tokyo (1998) [in Japanese].
Google Scholar
[11]
M. N. Afsar, J. R. Birch and P. N. Clarke, Proc. of The IEEE 74 (1986) 183.
Google Scholar
[12]
S. S. Stuchly, M. A. Rzepecka, and M. F. Iskander, IEEE Trans. Instrum. Meas. 23 (1974) 56.
Google Scholar
[13]
H. Kakemoto, S. Wada, and T. Tsurumi, Key Engineering Materials 301 (2006).
Google Scholar
[1]
4 1 10 100 1000 0.
Google Scholar
[1]
2 0 0. 5 1 1. 5 Fig. 8 Dielectric permittivity mapping using test-probe. Cu ALO.
Google Scholar
[9]
4GHz Fig. 9 Reflection intensity mapping of Al2O3/Cu-plate using micro-probe. 5x5.
Google Scholar
[8]
5GHz Fig. 2 Reflection intensity for Cu-plate as a function of distance between probe and Cu-plate (a), and reflection intensity for Cu-plate versus phase at distance of 0. 2mm (b) from 8. 6GHz to 10GHz. 0 1 2 3 4 5 Distance (mm) Intensity (arb. units).
Google Scholar
[8]
6GHz 10GHz 9GHz Cu-plate a) 0 100 200 300 Phase (deg. ) Intensity (arb. units) b).
Google Scholar
[8]
6GHz 10GHz 9GHz #2 #3.
Google Scholar
3 0 1 2 3 4 5 Distance (mm) Intensity (V).
Google Scholar
[9]
4GHz STO ALO Fig. 3 Reflection intensity of Al2O3 and SrTiO3 single crystals versus distance between probe and sample measured at 9. 4GHz. Fig. 4 The result of curve fitting for reflection intensity of Cu-plate versus distance between probe and sample.
Google Scholar
05 Intensity (V) 5 4 3 2 1 0 Distance (mm) Cu-plate.
Google Scholar
[9]
4GHz Fig. 5 Reflection intensity and coefficient of Al2O3 and SrTiO3 single crystal.
Google Scholar
05 Intensity (V).
Google Scholar
0 Distance (mm).
Google Scholar
2 Γ ALO STO Fig. 6 Reflection coefficient of samples as a function of effective area (a), and effective are of samples versus dielectric permittivity. STO ALO b) 1 10 100 1000 10000 0 1 2 3 4 5 Electrical length (mm) Dielectric permittivity Fig. 7 Dielectric permittivity of Al2O3 and SrTiO3 single crystal versus distance. STO ALO.
DOI: 10.1016/b978-0-12-822283-6.00006-4
Google Scholar
[9]
4GHz S(mm 2) εr a) ALO STO S (mm 2) |Γ|.
Google Scholar