High Frequency Dielectric Mapping Using Un-Contact Probe for Dielectric Materials

Abstract:

Article Preview

The microwave reflection intensity was measured at room temperature for Cu-plate, Al2O3 and SrTiO3 single crystals using a un-contact probe as a function of distance between sample and probe. The difference of reflection intensity for Cu-plate, Al2O3 and SrTiO3 single crystals was observed in the region where the distance of 0.2mm between sample and probe, and it was caused from dielectric permittivities of samples. The reflection coefficient of sample was estimated in comparison with results of electromagnetic simulation using finite differential time domain method. The reflection intensity for Cu-plate, Al2O3 and SrTiO3 single crystals was transformed to dielectric permittivity at reflection intensity minimum point. The dielectric permittivity mapping was also examined at reflection intensity minimum point.

Info:

Periodical:

Edited by:

Keiichi Katayama, Kazumi Kato, Tadashi Takenaka, Masasuke Takata and Kazuo Shinozaki

Pages:

189-192

DOI:

10.4028/www.scientific.net/KEM.320.189

Citation:

H. Kakemoto et al., "High Frequency Dielectric Mapping Using Un-Contact Probe for Dielectric Materials", Key Engineering Materials, Vol. 320, pp. 189-192, 2006

Online since:

September 2006

Export:

Price:

$35.00

[1] H. Chazono and H. Kishi, Jpn. J. Appl. Phys. 40 (2001) 5624.

[2] A. J. Moulson and J. M. Herbert, �Electroceramics, Properties, Applications, 2nd edition� Jhon Wiley & Sons (2003).

[3] B. W. Hakki and P. D. Coleman, IEEE Trans. Microwave Theory Tech. 8 (1960) 381.

[4] Y. Kobayashi and M. Katoh, IEEE Trans. Microwave Theory Tech. 33 (1985) 586.

[5] D. E. Steinhauer, C. P. Vlahacos, C. Canedy, A. Stanishevsky, J. Melngailis, R. Ramesh, F. C. Wellstood, and Steven M. Anlage, Appl. Phys. Lett. 75 (1999) 3180.

DOI: 10.1063/1.125270

[6] D. E. Steinhauer, C. P. Vlahacos, F. C. Wellstood, Steven M. Anlage, C. Canedy, R. Ramesh, A. Stanishevsky and J. Melngailis, Rev. Sci. Instrum. 71 (2000) 2751.

DOI: 10.1063/1.1150687

[7] H. Kakemoto, J. Li, S-M. Num, S. Wada and T. Tsurumi, Jpn. J. Appl. Phys. 42 (2001) 6143.

[8] F. Okada, �Microwave Engineering�Gakken-sha, Tokyo (1993) [in Japanese].

[9] Y. Kato, �Denpa Ku-chu Senro no Kenkyu�Kyoritsu-shuppan, Tokyo (1941) [in Japanese].

[10] T. Uno, �Electromagnetic field and antenna analysis using FDTD method�Corona-sha, Tokyo (1998) [in Japanese].

[11] M. N. Afsar, J. R. Birch and P. N. Clarke, Proc. of The IEEE 74 (1986) 183.

[12] S. S. Stuchly, M. A. Rzepecka, and M. F. Iskander, IEEE Trans. Instrum. Meas. 23 (1974) 56.

[13] H. Kakemoto, S. Wada, and T. Tsurumi, Key Engineering Materials 301 (2006).

2.

4.

6.

8 1.

[1] 2.

[1] 4 1 10 100 1000 0.

2.

4.

6.

8 1.

[1] 2 0 0. 5 1 1. 5 Fig. 8 Dielectric permittivity mapping using test-probe. Cu ALO.

[9] 4GHz Fig. 9 Reflection intensity mapping of Al2O3/Cu-plate using micro-probe. 5x5.

[8] 5GHz Fig. 2 Reflection intensity for Cu-plate as a function of distance between probe and Cu-plate (a), and reflection intensity for Cu-plate versus phase at distance of 0. 2mm (b) from 8. 6GHz to 10GHz. 0 1 2 3 4 5 Distance (mm) Intensity (arb. units).

[9] 4GHz.

[8] 6GHz 10GHz 9GHz Cu-plate a) 0 100 200 300 Phase (deg. ) Intensity (arb. units) b).

[8] 6GHz 10GHz 9GHz #2 #3.

[9] 4GHz 0.

05.

1.

15.

2.

25.

3 0 1 2 3 4 5 Distance (mm) Intensity (V).

[9] 4GHz STO ALO Fig. 3 Reflection intensity of Al2O3 and SrTiO3 single crystals versus distance between probe and sample measured at 9. 4GHz. Fig. 4 The result of curve fitting for reflection intensity of Cu-plate versus distance between probe and sample.

20.

15.

10.

05 Intensity (V) 5 4 3 2 1 0 Distance (mm) Cu-plate.

[9] 4GHz Fig. 5 Reflection intensity and coefficient of Al2O3 and SrTiO3 single crystal.

30.

25.

20.

15.

10.

05 Intensity (V).

[2] 0.

[1] 5.

[1] 0.

5.

0 Distance (mm).

[1] 0.

8.

6.

4.

2 Γ ALO STO Fig. 6 Reflection coefficient of samples as a function of effective area (a), and effective are of samples versus dielectric permittivity. STO ALO b) 1 10 100 1000 10000 0 1 2 3 4 5 Electrical length (mm) Dielectric permittivity Fig. 7 Dielectric permittivity of Al2O3 and SrTiO3 single crystal versus distance. STO ALO.

[8] 9 310.

[9] 4GHz S(mm 2) εr a) ALO STO S (mm 2) |Γ|.

In order to see related information, you need to Login.