p.971
p.975
p.979
p.983
p.987
p.991
p.995
p.999
p.1003
Bone Ingrowth Into Porous Bioactive Titanium Implant for Load-Bearing Use: Experimental Study Using a Novel Canine Anterior Interbody Fusion Model
Abstract:
We have developed a porous titanium implant sintered with spacer particles (porosity = 50 %, average pore size ± standard deviation = 303 ± 152 !m, yield compression strength = 100MPa). This porous titanium was successfully treated with chemical and thermal treatment that gives a bioactive micro-porous titania layer on the titanium surface, and it is expected as effective biomaterial for biological fixation on load bearing condition. In this study, ten adult female beagle dogs underwent anterior lumbar interbody fusion at L6-7 using either BT-implant or non-treated implant (NT-implant), then followed by posterior interspinous wiring and facet screw fixation. The radiographic evaluations were performed 1, 2 and 3 months postoperatively using X-ray fluoroscopy. Animals were sacrificed after 3 months postoperatively, and fusion status was evaluated by manual palpation. Histological evaluation was also performed. Both histological and radiological evaluation revealed that interbody fusion was achieved in 5 of 5 dogs (100%) in BT-group and 3 of 5 dogs (60%) in NT-group. In BT implants, we could observe a large amount of new bone formation from periphery to the center of the implant, whereas in NT implants, fibrous tissue formation was still observed even in the implants with successful fusion. The results of this study indicate that porous bioactive titanium implant will represent a new osteoconductive biomaterial with improved fusion characteristics.
Info:
Periodical:
Pages:
987-990
Citation:
Online since:
February 2007
Keywords:
Price:
Сopyright:
© 2007 Trans Tech Publications Ltd. All Rights Reserved
Share:
Citation: