Effect of Nanostructured TiH2 on the Formation of Multimeshworked and Nanoporous TiO2 by Cathodic-Anodization Treatment

Article Preview

Abstract:

Cathodic-anodization process was performed to treat titanium sheets to improve biocompatible performance. Grazing incident X-ray diffraction, transmission electron microscopy, scanning electron microscopy and electrochemical measurement were used to evaluate the influence of hydrogen on the formation of nanoporous TiO2. Multimeshworked and nanoporous TiO2 was observed after treatment with cathodic-anodization process. The nanoporous oxide layer is hard to form without nano-TiH2. The nano-TiH2 plays an important role in forming multimeshworked and nanostructured TiO2 layer. Hydrogen charging by cathodization is believed to enhance the formation of nanoporous oxide film and thus promote biocompatibility.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

463-468

Citation:

Online since:

May 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Friberg, K. Grondahl, U. Lekholm and P.I. Brånemark: Clin. Implant Dent. Relat. Res., Vol. 2 (2000), p.184.

Google Scholar

[2] B. Kasemo and J. Lausmaa: Swed. Dent. J., Vol. 28 (Supp l, 1983), p.19.

Google Scholar

[3] H.M. Kim, T. Kokubo, S. Fujibayashi, S. Nishiguchi and T. Nakamura: J. Biomed. Mater. Res., Vol. 552 (2000).

Google Scholar

[4] S.I. Tanaka, M. Aonuma, N. Hirose and T. Tanaki: J. Electrochem. Soc., Vol. 149 (2002) No. 11, p.167.

Google Scholar

[5] S.I. Tanaka, M. Aonuma, N. Hirose and T. Tanaki: J. Electrochem. Soc., Vol. 149 (2002) No. 12, p.186.

Google Scholar

[6] Y.T. Sul, C.B. Johansson, Y. Jeong, A. Wennerberg and T. Albrektsson: Clin. Oral Implants Res., Vol. 13 (2002), p.252.

Google Scholar

[7] B. Feng, J.Y. Chen, S.K. Qi, L. He, J.Z. Zhao and X.D. Zhang: J. Mater. Sci. Mater. Med., Vol. 13 (2002) No. 5, p.457.

Google Scholar

[8] H.H. Kim, F. Miyaji, T. Kokubo, S. Nishiguchi and T. Nakamura: J. Biomed. Mater. Res., Vol. 5 (1999), p.100.

Google Scholar

[9] M. Takemoto, S. Fujibayashi, M. Neo, J. Suzuki, T. Kokubo and T. Nakamura: Biomaterials, Vol. 26 (2005), p.6014.

DOI: 10.1016/j.biomaterials.2005.03.019

Google Scholar

[10] H.B. Wen, Q. Liu, J.R. De Wijn, K. De Groot and F.Z. Cui: J. Mater. Sci. Mater. Med. Vol. 9 (1998) No. 3, p.121.

Google Scholar

[11] S. Fujibayashi, T. Nakamura, S. Nishiguchi, J. Tamura, M. Uchida, H.M. Kim and T. Kokubo: J. Biomed. Mater. Res., Vol. 56 (2001) No. 4, p.562.

Google Scholar

[12] B. Kasemo and J. Lausmaa: Environ Health Perspect, Vol. 5 (1994), p.41.

Google Scholar

[13] J.R. Goldberg and J.L. Gilbert: Biomaterials, Vol. 25 (2004) No. 5, p.851.

Google Scholar

[14] Y.T. Sul, C.B. Johansson, Y. Jeong and T. Albrektsson: Medical Engineering & Physics., Vol. 23 (2001), p.329.

Google Scholar

[15] H.M. Kim, F. Miyaji, T. Kokubo and T. Nakamura: J. Mater. Sci. Mater. Med., Vol. 8 (1997) No. 6, p.341.

Google Scholar