Dynamic Indentation and Penetration Properties of Aluminium Foams

Abstract:

Article Preview

Failure of aluminium foams due to dynamic indentation and penetration is very common in their application such as light-weight structural sandwich panels, packing materials and energy absorbing devices. This requires a sound understanding of deformation and energy absorption mechanisms of the aluminium foams as well as the effect of impact velocity. In this study, a finite element analysis using ABAQUS is conducted for the dynamic indentation/penetration process of aluminium foams under a rigid flat-headed indenter. The indenter is pushed into the foam either at a constant velocity or with an initial velocity. Two mechanisms exist: compression of the foam ahead of the indenter and fracture along the indenter edge. Effect of impact velocity is noted on the size of a localized deformation and the total energy absorbed.

Info:

Periodical:

Key Engineering Materials (Volumes 340-341)

Edited by:

N. Ohno and T. Uehara

Pages:

383-388

Citation:

J. H. Shen and G. X. Lu, "Dynamic Indentation and Penetration Properties of Aluminium Foams", Key Engineering Materials, Vols. 340-341, pp. 383-388, 2007

Online since:

June 2007

Export:

Price:

$38.00

[1] L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties (2nd edn. Cambridge University Press, Cambridge, UK 1997).

[2] M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson and H.N.G. Wadel: Metal Foams: A Design Guide (Butterworth-Heineman, Boston 2000).

[3] O.B. Olurin, N.A. Fleck and M.F. Ashby: Scripta Materialia, Vol. 43 (2000), p.983.

[4] E.W. Andrews, G. Gioux, P. Onck and B.J. Gibson: International Journal of Mechanical Sciences Vol. 43 (2001), p.701.

[5] Cs. Kádár, E. Maire, A. Borbély, G. Peix, J. Lendvai and Zs. Rajkovits: Materials Science and Engineering A, Vol. 387-389 (2004), p.321.

DOI: https://doi.org/10.1016/j.msea.2004.03.091

[6] S. Ramachandra, P. Sudheer Kumar and U. Ramamurty: Scripta Materialia, Vol. 49 (2003), p.741.

[7] Q.M. Li, R.N. Maharaj and S.R. Reid: International Journal of Vehicle Design, Vol. 37 (2005), p.175.

[8] T. Mukai, H. Kanahashi, K. Higashi, Y. Yamada, K. Shimojima, M. Mabuchi, T. Miyoshi, T.G. Nieh, in: Cellular Metals and Metal Foaming Technology, edited by J. Banhart, M.F. Ashby, N.A. Fleck, Verlag MIT, Publishing, Bremen, Germany, 1999, p.353.

[9] V.S. Deshpande, N.A. Fleck: International Journal of Impact Engineering, Vol. 24 (2000), p.277.

[10] D. Ruan, G. Lu, F.L. Chen and E. Siores: Composite Structures. Vol. 57 (2002), p.331.

[11] P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou and S. Li: Journal of the Mechanics and Physics of Solids, Vol. 53 (2005), p.2174.

[12] P.J. Tan, S.R. Reid, J.J. Harrigan, Z. Zou and S. Li: Journal of the Mechanics and Physics of Solids, Vol. 53 (2005), p.2206.

[13] A. Reyes, O. S. Hopperstad, T. Berstad, A.G. Hanssen and M. Langseth: European Journal of Mechanics - A/Solids, Vol. 22 (2003), p.815.

[14] R.E. Miller: International Journal of Mechanical Sciences, Vol. 42 (2000), p.729.

[15] J.S. Blazy, A. Marie-Louise, S. Forest, Y. Chastel, A. Pineau, A. Awade, C. Grolleron and F. Moussy: International Journal of Mechanical Sciences, Vol. 46 (2004), p.217.

DOI: https://doi.org/10.1016/j.ijmecsci.2004.03.005

[16] A.G. Hanssen, O.S. Hopperstad, M. Langseth and H. Ilstad: International Journal of Mechanical Sciences, Vol. 44 (2002), p.359.

Fetching data from Crossref.
This may take some time to load.