Plastic Deformation Behavior of High Strength Steel Sheet under Non-Proportional Loading and its Modeling

Article Preview

Abstract:

This paper deals with experimental observations and modeling of plastic deformations of a high strength steel sheet (HSS sheet) under biaxial stress conditions. Using a cruciform specimen of a HSS sheet of 980MPa-TS, experiments of proportional and non-proportional loadings were performed. Numerical simulations for the biaxial stress-strain responses were conducted using a constitutive model of large-strain cyclic plasticity (Yoshida-Uemori model), and the results were compared to the experimental data. The results of numerical simulation show a good agreement with the experimental results, which is attributed to accurate modeling of the backstress evolution of the anisotropic yield surface.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 340-341)

Pages:

895-900

Citation:

Online since:

June 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Uemori, T., Okada, T. and Yoshida, F.: Key Engineering Materials, Vols. 177-180, (1998), p.497.

Google Scholar

[2] Uemori, T., Okada, T. and Yoshida, F.: Metals and Materials, Vol. 4 (2000), p.311.

Google Scholar

[3] Li, K. P., Carden, W. P. and Wagoner, R. H.: Int. J. Mechanical Sciences, Vol. 44 (2000), p.103.

Google Scholar

[4] Gau, J-T., Gray, L. K. and Kinzel, L.: Int. J. Mechanical Sciences, Vol. 43 (2001), p.1813.

Google Scholar

[5] Yoshida, F. and Uemori, T.: Int. J. Plasticity, Vol. 18, (2002), p.661.

Google Scholar

[6] Yoshida, F. and Uemori, T.: Int. J. Mechanical Sciences, Vol. 45 (2003), p.1687.

Google Scholar

[7] Yoshida, F., Uemori, T. and Fujiwara, K.: Int. J. Plasticity, Vol. 18, (2002), p.633.

Google Scholar

[8] Uemori, T. and Yoshida, F.: Key Engineering Materials, Vols. 233-236, (1998), p.287.

Google Scholar

[9] Hill, R.: Proc. Royal Society of London, Vol. A193 (1948), p.281.

Google Scholar

[10] Hill, R.: J. Mechanics and Physics of Solids, Vol. 38 (1990), p.405.

Google Scholar

[11] Gotoh, M.: Int. J. Mechanical Sciences, Vol. 19 (1979), p.505.

Google Scholar

[12] Barlat, F., Becker, R. C., Hayashida, Y., Maeda, Y., Yanagawa, M., Chung, K., Brem, J. C., Lege, D. J., Matsui, K., Murtha, S. J. and Hattori, S.: Int. J. Plasticity, 13, (1997), p.385.

DOI: 10.1016/s0749-6419(97)80005-8

Google Scholar

[13] Barlat, F., Aretz, H., Yoon, J. W., Karabin, M. E., Brem, J. C. and Dick, R. E.: Int. J. Plasticity, Vol 21 (2005), p.1009.

DOI: 10.1016/j.ijplas.2004.06.004

Google Scholar

[14] Chung, K., Lee, M., Kim, D., Kim, C., Wenner, M. L. and Barlat, F.: Int. J. Plasticity, Vol 21 (2005), p.861.

Google Scholar

[15] Hu, W.: Int. J. Plasticity, Vol. 21 (2005), p.1771.

Google Scholar

[16] Khan, A.S., and Wang, X.: Int. J. Plasticity, Vol. 9 (1993), p.889.

Google Scholar

[17] Kowalczyk, K. and Gambin, W.: Int. J. Plasticity, Vol. 20 (2004), p.19.

Google Scholar

[18] Naka, T., Nakayama, Y., Uemori, T., Hino, R. and Yoshida, F.: Key Eng. Mater, Vol. 274-276 (2004), p.937.

Google Scholar

[19] Yoshida, F., Urabe, M. and Toropov, V. V.: Int. J. Mechanical Sciences, Vol. 40 (1998), p.237.

Google Scholar

[20] Yoshida, F.: Int. J. Plasticity, Vol. 16 (2000), p.359.

Google Scholar